MCP Deployment Guide

version q4-18

Copyright notice

2025 Mirantis, Inc. All rights reserved.

This product is protected by U.S. and international copyright and intellectual property laws. No part of this publication may be reproduced in any written, electronic, recording, or photocopying form without written permission of Mirantis, Inc.

Mirantis, Inc. reserves the right to modify the content of this document at any time without prior notice. Functionality described in the document may not be available at the moment. The document contains the latest information at the time of publication.

Mirantis, Inc. and the Mirantis Logo are trademarks of Mirantis, Inc. and/or its affiliates in the United States an other countries. Third party trademarks, service marks, and names mentioned in this document are the properties of their respective owners.

Preface

This documentation provides information on how to use Mirantis products to deploy cloud environments. The information is for reference purposes and is subject to change.

Intended audience

This documentation is intended for deployment engineers, system administrators, and developers; it assumes that the reader is already familiar with network and cloud concepts.

Documentation history

The following table lists the released revisions of this documentation:

Revision date	Description
February 8, 2019	Q4`18 GA

Introduction

MCP enables you to deploy and manage cloud platforms and their dependencies. These include OpenStack and Kubernetes based clusters.

The deployment can be performed automatically through MCP DriveTrain or using the manual deployment procedures.

The MCP DriveTrain deployment approach is based on the bootstrap automation of the Salt Master node that contains MAAS hardware nodes provisioner as well as on the automation of an MCP cluster deployment using the Jenkins pipelines. This approach significantly reduces your time and eliminates possible human errors.

The manual deployment approach provides the ability to deploy all the components of the cloud solution in a very granular fashion.

The guide also covers the deployment procedures for additional MCP components including OpenContrail, Ceph, StackLight, NFV features.

Seealso

Minimum hardware requirements

Plan the deployment

The configuration of your MCP installation depends on the individual requirements that should be met by the cloud environments.

The detailed plan of any MCP deployment is determined on a per-cloud basis. For the MCP reference architecture and design overview, see: MCP Reference Architecture: Plan an OpenStack environment or MCP Reference Architecture: Plan a Kubernetes cluster depending on the type of your deployment.

Caution!

Kubernetes support termination notice

Starting with the MCP 2019.2.5 update, the Kubernetes component is no longer supported as a part of the MCP product. This implies that Kubernetes is not tested and not shipped as an MCP component. Although the Kubernetes Salt formula is available in the community driven SaltStack formulas ecosystem, Mirantis takes no responsibility for its maintenance.

Customers looking for a Kubernetes distribution and Kubernetes lifecycle management tools are encouraged to evaluate the Mirantis Kubernetes-as-a-Service (KaaS) and Docker Enterprise products.

At the same time, MCP provides a flexible reduced prebuilt mirror image that you can customize depending on the needs of your MCP deployment after the initial bootstrap is performed. The usage of the prebuilt mirror image is essential in case of an offline MCP deployment scenario. The prebuilt mirror image contains the Debian package mirror (Aptly or flat deb repositories), Docker images mirror (Registry), Git repositories mirror, and mirror of the Mirantis Ubuntu VM cloud images (VCP). This guide includes the steps required for the case with the additional prebuilt VM deployment on the Foundation node.

Prepare for the deployment

Create a project repository

An MCP cluster deployment configuration is stored in a Git repository created on a per-customer basis. This section instructs you on how to manually create and prepare your project repository for an MCP deployment.

Before you start this procedure, create a Git repository in your version control system, such as GitHub.

To create a project repository manually:

- 1. Log in to any computer.
- 2. Create an empty directory and change to that directory. In the example below, it is mcpdoc.
- 3. Initialize your project repository:

git init

Example of system response:

Initialized empty Git repository in /Users/crh/Dev/mcpdoc/.git/

4. Add your repository to the directory you have created:

git remote add origin <YOUR-GIT-REPO-URL>

5. Verify that Git and your local repository are set up correctly by creating and pushing a test file to your project repository. Run the following example commands:

Note

The example commands below require the Git and GitHub credentials to be created and configured for your project repository.

```
git remote add origin https://github.com/example_account/mcpdoc.git
git config --local user.email "example@example.com"
git config --local user.name "example_gituser"
git config -l
echo "#. mcpdoc" >> README.md
```

git add README.md git commit -m "first commit" git push -u origin master 6. Create the following directories for your deployment metadata model:

```
mkdir -p classes/cluster
mkdir nodes
```

7. Add the Reclass variable to your bash profile by verifying your current directory using pwd and adding the string that exports the Reclass variable with the output value of the pwd command:

```
pwd
vim ~/.bash_profile
export RECLASS_REPO=<PATH_TO_YOUR_DEV_DIRECTORY>
```

Example of system response:

```
/Users/crh/Dev/mcpdoc/
"~/.bash_profile" 13L, 450C
export RECLASS_REPO="/Users/crh/Dev/mcpdoc/"
```

- 8. Log out and log back in.
- 9. Verify that your ~/.bash_profile is sourced:

echo \$RECLASS_REPO

The command must show the value of your RECLASS_REPO variable.

Example of system response:

/Users/crh/Dev/mcpdoc/

10 Add the Mirantis Reclass module to your repository as a submodule:

git submodule add https://github.com/Mirantis/reclass-system-salt-model ./classes/system/

Example of system response:

Cloning into '<PATH_TO_YOUR_DEV_DIRECTORY>/classes/system'... remote: Counting objects: 8923, **done**. remote: Compressing objects: 100% (214/214), **done**. remote: Total 8923 (delta 126), reused 229 (delta 82), pack-reused 8613 Receiving objects: 100% (8923/8923), 1.15 MiB | 826.00 KiB/s, **done**. Resolving deltas: 100% (4482/4482), **done**. Checking connectivity... **done**. 11 Update the submodule:

git submodule sync git submodule update --init --recursive --remote

12 Add your changes to a new commit:

git add -A

13 Commit your changes:

git commit

14 Add your commit message.

• Example of system response:

```
[master (root-commit) 9466ada] Initial Commit
2 files changed, 4 insertions(+)
create mode 100644 .gitmodules
create mode 160000 classes/system
```

15 Push your changes:

git push

.

16 Proceed to Create a deployment metadata model.

Create a deployment metadata model

In a Reclass metadata infrastructural model, the data is stored as a set of several layers of objects, where objects of a higher layer are combined with objects of a lower layer, that allows for as flexible configuration as required.

The MCP metadata model has the following levels:

- Service level includes metadata fragments for individual services that are stored in Salt formulas and can be reused in multiple contexts.
- System level includes sets of services combined in a such way that the installation of these services results in a ready-to-use system.
- Cluster level is a set of models that combine already created system objects into different solutions. The cluster module settings override any settings of service and system levels and are specific for each deployment.

The model layers are firmly isolated from each other. They can be aggregated on a south-north direction using service interface agreements for objects on the same level. Such approach allows reusing of the already created objects both on service and system levels.

This section describes how to generate the cluster level metadata model for your MCP cluster deployment using the Model Designer web UI. The tool used to generate the model is Cookiecutter, a command-line utility that creates projects from templates.

While generating a metadata model, you can enable automated encryption of all secrets for the Salt Master node .iso file.

Note

The Model Designer web UI is only available within Mirantis. The Mirantis deployment engineers can access the Model Designer web UI using their Mirantis corporate username and password.

The workflow of a model creation includes the following stages:

- 1. Defining the model through the Model Designer web UI.
- 2. Optional. Tracking the execution of the model creation pipeline in the Jenkins web UI.
- 3. Obtaining the generated model to your email address or getting it published to the project repository directly.

Note

If you prefer publishing to the project repository, verify that the dedicated repository is configured correctly and Jenkins can access it. See Create a project repository for details. As a result, you get a generated deployment model and can customize it to fit specific use-cases. Otherwise, you can proceed with the base infrastructure deployment.

Enable all secrets encryption

The Model Designer UI supports passing a private key to enable automated encryption of secrets.yml during the Salt Master node .iso file generation.

To enable all secrets encryption in the Model Designer UI:

1. Generate a private PGP key locally. For example:

```
mkdir -p ~/mcp-temp-gpg-key ; cd ~/mcp-temp-gpg-key
cd cat <<EOF > gpg-batch.txt
Key-Type: 1
Key-Length: 4096
Expire-Date: 0
Name-Real: gpg-demo.com
Name-Email: saltmasterdemo@example.com
EOF
export GNUPGHOME="$(pwd)/gpghome" ; mkdir -p gpghome ; chmod 0700 gpghome
gpg --gen-key --batch < gpg-batch.txt
gpg --export-secret-key -a saltmasterdemo@example.com > gpgkey.asc
gpg --list-secret-keys
```

2. Copy the generated private PGP key:

cat gpgkey.asc

Example of system response:

```
-----BEGIN PGP PRIVATE KEY BLOCK-----
Version: GnuPG v1
```

```
IQcYBFyKM7kBEADGU6P/Lp9YRMY/vLw7VOF5Sox1rnu2lz6YqnNQ2J+ZHVIPA9R
```

- 3. Proceed with the metadata model generation as described in Define the deployment model. While generating the metadata model, enable the following parameters:
 - In General -> Services section, select Secrets Encryption Enabled
 - In Infra -> Salt Master section, paste the private key to the Secrets Encryption Private Key field
- 4. Proceed to the metadata model generation.

Seealso

MCP Operations Guide: Manage secrets in the Reclass model

Define the deployment model

This section instructs you on how to define the cluster level metadata model through the web UI using Cookiecutter. Eventually, you will obtain a generic deployment configuration that can be overriden afterwards.

Note

The Model Designer web UI is only available within Mirantis. The Mirantis deployment engineers can access the Model Designer web UI using their Mirantis corporate username and password.

Note

Currently, Cookiecutter can generate models with basic configurations. You may need to manually customize your model after generation to meet specific requirements of your deployment, for example, four interfaces bonding.

To define the deployment model:

- 1. Log in to the web UI.
- 2. Go to Integration dashboard > Models > Model Designer.
- 3. Click Create Model. The Create Model page opens.
- 4. Configure your model by selecting a corresponding tab and editing as required:
 - 1. Configure General deployment parameters. Click Next.
 - 2. Configure Infrastructure related parameters. Click Next.
 - 3. Configure Product related parameters. Click Next.
- 5. Verify the model on the Output summary tab. Edit if required.
- 6. Click Confirm to trigger the Generate reclass cluster separated-products-auto Jenkins pipeline. If required, you can track the success of the pipeline execution in the Jenkins web UI.

If you selected the Send to e-mail address publication option on the General parameters tab, you will receive the generated model to the e-mail address you specified in the Publication options > Email address field on the Infrastructure parameters tab. Otherwise, the model will automatically be pushed to your project repository.

Seealso

- Create a project repository
- Publish the deployment model to a project repository

General deployment parameters

The tables in this section outline the general configuration parameters that you can define for your deployment model through the Model Designer web UI. Consult the Define the deployment model section for the complete procedure.

The General deployment parameters wizard includes the following sections:

- Basic deployment parameters cover basic deployment parameters
- Services deployment parameters define the platform you need to generate the model for
- Networking deployment parameters cover the generic networking setup for a dedicated management interface and two interfaces for the workload. The two interfaces for the workload are in bond and have tagged sub-interfaces for the Control plane (Control network/VLAN) and Data plane (Tenant network/VLAN) traffic. The PXE interface is not managed and is leaved to default DHCP from installation. Setups for the NFV scenarios are not covered and require manual configuration.

Parameter	Default JSON output	Description
Cluster name	cluster_name: deployment_name	The name of the cluster that will be used as cluster/ <cluster_name>/ in the project directory structure</cluster_name>
Cluster domain	cluster_domain: deploy-name.local	The name of the domain that will be used as part of the cluster FQDN
Public host	public_host: \${_param:openstack_p roxy_address}	The name or IP address of the public endpoint for the deployment
Reclass repository	reclass_repository: https://github.co m/Mirantis/mk-lab-salt-model.git	The URL to your project Git repository containing your models
Cookiecutter template URL	cookiecutter_template_url: git@gith ub.com:Mirantis/mk2x-cookiecutter- reclass-model.git	The URL to the Cookiecutter template repository
Cookiecutter template branch	cookiecutter_template_branch: mas ter	The branch of the Cookiecutter template repository to use, master by default. Use refs/tags/ <mcp_version> to generate the model that corresponds to a specific MCP release version. For example, 2017.12. Other possible values include stable and testing.</mcp_version>
Shared Reclass URL	shared_reclass_url: ssh://mcp-jenkin s@gerrit.mcp.mirantis.net:29418/sa lt-models/reclass-system.git	The URL to the shared system model to be used as a Git submodule for the MCP cluster

Basic deployment parameters

MCP version	mcp_version: stable	Version of MCP to use, stable by default. Enter the release version number, for example, 2017.12. Other possible values are: nightly, testing. For nightly, use cookiecutte r_template_branch: master.
Cookiecutter template credentials	cookiecutter_template_credentials: gerrit	Credentials to Gerrit to fetch the Cookiecutter templates repository. The parameter is used by Jenkins
Deployment type	deployment_type: physical	The supported deployment types include:
		 Physical for the OpenStack platform
		 Physical and Heat for the Kubernetes platform
Publication method	publication_method: email	The method to obtain the template. Available options include:
		Send to the e-mail addressCommit to repository

Services deployment parameters

Parameter	Default JSON output	Description
Platform	platform: openstack_enabled	The platform to generate the model for:
	• platform: kubernetes_enabled	• The OpenStack platform supports OpenContrail, StackLight LMA, Ceph, CI/CD, and OSS sub-clusters enablement. If the OpenContrail is not enabled, the model will define OVS as a network engine.
		 The Kubernetes platform supports StackLight LMA and Cl/CD sub-clusters enablement, OpenContrail networking, and presupposes Calico networking. To use the default Calico plugin, uncheck the OpenContrail enabled check box.

StackLight enabled	stacklight_enabled: 'True'	Enables a StackLight LMA sub-cluster.
Gainsight service enabled	gainsight_service_enabled: 'False'	Enables support for the Salesforce/Gainsight service
Salesforce notifications enabled	sf_notifications_enabled: 'False'	Enables sending of Alertmanager notifications to Salesforce
Ceph enabled	ceph_enabled: 'True'	Enables a Ceph sub-cluster.
CI/CD enabled	cicd_enabled: 'True'	Enables a CI/CD sub-cluster.
OSS enabled	oss_enabled: 'True'	Enables an OSS sub-cluster.
Benchmark node enabled	bmk_enabled: 'False'	Enables a benchmark node. False, by default.
Barbican enabled	barbican_enabled: 'False'	Enables the Barbican service
Backend for Barbican	barbican_backend: dogtag	The backend for Barbican

Networking deployment parameters

Parameter	Default JSON output	Description
DNS Server 01	dns_server01: 8.8.8.8	The IP address of the dns01 server
DNS Server 02	dns_server02: 1.1.1.1	The IP address of the dns02 server
Deploy network subnet	deploy_network_subnet: 10.0.0.0/24	The IP address of the deploy network with the network mask
Deploy network gateway	deploy_network_gateway: 10.0.0.1	The IP gateway address of the deploy network
Control network subnet	control_network_subnet: 10.0.1.0/2 4	The IP address of the control network with the network mask
Tenant network subnet	tenant_network_subnet: 10.0.2.0/24	The IP address of the tenant network with the network mask
Tenant network gateway	tenant_network_gateway: 10.0.2.1	The IP gateway address of the tenant network
Control VLAN	control_vlan: '10'	The Control plane VLAN ID
Tenant VLAN	tenant_vlan: '20'	The Data plane VLAN ID

NTP servers Added since 2019.2.6 update	0.pool.ntp.org,1.pool.ntp.org	The comma-separated list of Network Time Protocol (NTP) servers. You can also configure multiple NTP servers as required, for example, server1.ntp.org,server 2.ntp.org,server3.ntp.org.
---	-------------------------------	---

Infrastructure related parameters

The tables in this section outline the infrastructure configuration parameters you can define for your deployment model through the Model Designer web UI. Consult the Define the deployment model section for the complete procedure.

The Infrastructure deployment parameters wizard includes the following sections:

- Salt Master
- Ubuntu MAAS
- Publication options
- Kubernetes Storage
- Kubernetes Networking
- OpenStack cluster sizes
- OpenStack or Kuberbetes networking
- Ceph
- CI/CD
- Alertmanager email notifications
- Alertmanager Salesforce notifications
- OSS
- Repositories
- Nova

Salt Master

Parameter	Default JSON output	Description
Salt Master address	salt_master_address: 10.0.1.15	The IP address of the Salt Master node on the control network
Salt Master management address	salt_master_management_address: 10.0.1.15	The IP address of the Salt Master node on the management network
Salt Master hostname	salt_master_hostname: cfg01	The hostname of the Salt Master node
Secrets encryption enabled	secrets_encryption_enabled: 'False'	Encrypt sensitive data in the Reclass model
Secrets encryption private key	secrets_encryption_private_key: "	PGP keypair for the sensitive data encryption. If not specified, the key will be generated automatically.

Parameter	Default JSON output	Description
MAAS hostname	maas_hostname: cfg01	The hostname of the MAAS virtual server
MAAS deploy address	maas_deploy_address: 10.0.0.15	The IP address of the MAAS control on the deploy network
MAAS fabric name	deploy_fabric	The MAAS fabric name for the deploy network
MAAS deploy network name	deploy_network	The MAAS deploy network name
MAAS deploy range start	10.0.20	The first IP address of the deploy network range
MAAS deploy range end	10.0.230	The last IP address of the deploy network range

Ubuntu MAAS

Publication options

Parameter	Default JSON output	Description
Email address	email_address: <your-email></your-email>	The email address where the generated Reclass model will be sent to

Kubernetes Storage

Parameter	Default JSON output	Description
Kubernetes rbd enabled	False	Enables a connection to an existing external Ceph RADOS Block Device (RBD) storage. Requires additional parameters to be configured in the Product parameters section. For details, see: Product related parameters.

Kubernetes Networking

Parameter	Default JSON output	Description
Kubernetes metallb enabled	False	Enables the MetalLB add-on that provides a network load balancer for bare metal Kubernetes clusters using standard routing protocols. For the deployment details, see: Enable the MetalLB support.

Kubernetes ingressnginx enabled	False	Enables the NGINX Ingress controller for Kubernetes. For the deployment details, see: Enable the
		NGINX Ingress controller.

OpenStack cluster sizes

Parameter	Default JSON output	Description
OpenStack cluster sizes	openstack_cluster_size: compact	A predefined number of compute nodes for an OpenStack cluster. Available options include: few for a minimal cloud, up to 50 for a compact cloud, up to 100 for a small cloud, up to 200 for a medium cloud, up to 500 for a large cloud.

OpenStack or Kuberbetes networking

Parameter	Default JSON output	Description
OpenStack network engine	openstack_network_engine: openco ntrail	Available options include opencontrail and ovs. NFV feature generation is experimental. The OpenStack Nova compute NFV req enabled parameter is for enabling Hugepages and CPU pinning without DPDK.
Kubernetes network engine	kubernetes_network_engine: openc ontrail	Available options include calico and opencontrail. This parameter is set automatically. If you uncheck the OpenContrail enabled field in the General parameters section, the default Calico plugin is set as the Kubernetes networking.

Ceph

Parameter	Default JSON output	Description
Ceph version	luminous	The Ceph version
Ceph OSD backend	bluestore	The OSD backend type

Backend network subnet	backend_network_subnet: 10.0.2.0/ 24	The IP address of Ceph backend network with the network mask. Used as cluster_network for OSD data replication
Backend VLAN	backend_vlan: 30	The Ceph backend VLAN ID used for OSD data replication on cluster_network

CI/CD

Parameter	Default JSON output	Description
OpenLDAP enabled	openIdap_enabled: 'True'	Enables OpenLDAP authentication.
OpenLDAP name	openldap_domain: openldap-domai n.local	OpenLDAP domain name. Must match the ^[a-z0-9]+\$ regular expression and not contain any special symbols.

Alertmanager email notifications

Parameter	Default JSON output	Description
Alertmanager email notifications enabled	alertmanager_notification_email_en abled: 'False'	Enables email notifications using the Alertmanager service
Alertmanager notification email from	alertmanager_notification_email_fro m: john.doe@example.org	Alertmanager email notifications sender
Alertmanager notification email to	alertmanager_notification_email_to: jane.doe@example.org	Alertmanager email notifications receiver
Alertmanager email notifications SMTP host	alertmanager_notification_email_ho stname: 127.0.0.1	The address of the SMTP host for alerts notifications
Alertmanager email notifications SMTP port	alertmanager_notification_email_po rt: 587	The address of the SMTP port for alerts notifications
Alertmanager email notifications with TLS	alertmanager_notification_email_re quire_tls: 'True'	Enable using of the SMTP server under TLS (for alerts notifications)

Alertmanager notification	alertmanager_notification_email_pa ssword: password	The sender-mail password for alerts notifications
email password		

Alertmanager Salesforce notifications

Parameter	Default JSON output	Description
Salesforce notifier SFDC authentication URL	sf_notifier_sfdc_auth_url: URL	The authentication URL for the Salesforce service
Salesforce notifier SFDC username	sf_notifier_sfdc_username: john.doe @example.org	The customer account user name for the Salesforce service
Salesforce notifier SFDC password	sf_notifier_sfdc_password: password	The customer account password for the Salesforce service
Salesforce notifier SFDC organization ID	sf_notifier_sfdc_organization_id: 000 1	The organization ID for the Salesforce service
Salesforce notifier SFDC environment ID	sf_notifier_sfdc_environment_id: 00 01	The cloud ID in Salesforce
Salesforce notifier SFDC sandbox enabled	sf_notifier_sfdc_sandbox_enabled: ' True'	Enable sandbox support for the Salesforce service

OSS

Parameter	Default JSON output	Description
OSS CIS enabled	cis_enabled: 'True'	Enables the Cloud Intelligence Service
OSS Security Audit enabled	oss_security_audit_enabled: 'True'	Enables the Security Audit service
OSS Cleanup Service enabled	oss_cleanup_service_enabled: 'True'	Enables the Cleanup Service
OSS SFDC support enabled	oss_sfdc_support_enabled: 'True'`	Enables synchronization of your SalesForce account with OSS

Repositories

Parameter	Default JSON output	Description
Local repositories	local_repositories: 'False'	If true, changes repositories URLs to local mirrors. The local_repo_url parameter should be added manually after model generation.

Nova

Parameter	Default JSON output	Description
Nova VNC TLS enabled	nova_vnc_tls_enabled: 'False'	If True, enables the TLS encryption for communications between the OpenStack compute nodes and VNC clients.

Product related parameters

The tables in this section outline the product configuration parameters including infrastructure, CI/CD, OpenContrail, OpenStack, Kubernetes, Stacklight LMA, and Ceph hosts details. You can configure your product infrastructure for the deployment model through the Model Designer web UI. Consult the Define the deployment model section for the complete procedure.

The Product deployment parameters wizard includes the following sections:

- Infrastructure product parameters
- CI/CD product parameters
- OSS parameters
- OpenContrail service parameters
- OpenStack product parameters
- Kubernetes product parameters
- StackLight LMA product parameters
- Ceph product parameters

Infrastructure product parameters

Section	Default JSON output	Description
Infra kvm01 hostname	infra_kvm01_hostname: kvm01	The hostname of the first KVM node
Infra kvm01 control address	infra_kvm01_control_address: 10.0.1.24 1	The IP address of the first KVM node on the control network
Infra kvm01 deploy address	infra_kvm01_deploy_address: 10.0.0.24 1	The IP address of the first KVM node on the management network
Infra kvm02 hostname	infra_kvm02_hostname: kvm02	The hostname of the second KVM node
Infra kvm02 control address	infra_kvm02_control_address: 10.0.1.24 2	The IP address of the second KVM node on the control network
Infra kvm02 deploy address	infra_kvm02_deploy_address: 10.0.0.24 2	The IP address of the second KVM node on the management network
Infra kvm03 hostname	infra_kvm03_hostname: kvm03	The hostname of the third KVM node
Infra kvm03 control address	infra_kvm03_control_address: 10.0.1.24 3	The IP address of the third KVM node on the control network

Infra kvm03 deploy address	infra_kvm03_deploy_address: 10.0.0.24 3	The IP address of the third KVM node on the management network
Infra KVM VIP address	infra_kvm_vip_address: 10.0.1.240	The virtual IP address of the KVM cluster
Infra deploy NIC	infra_deploy_nic: eth0	The NIC used for PXE of the KVM hosts
Infra primary first NIC	infra_primary_first_nic: eth1	The first NIC in the KVM bond
Infra primary second NIC	infra_primary_second_nic: eth2	The second NIC in the KVM bond
Infra bond mode	infra_bond_mode: active-backup	The bonding mode for the KVM nodes. Available options include:
		 active-backup
		• balance-xor
		• broadcast
		• 802.3ad
		• balance-ltb
		• balance-alb To decide which bonding mode best suits the needs of your deployment, you can consult the official Linux bonding documentation.
OpenStack compute count	openstack_compute_count: '100'	The number of compute nodes to be generated. The naming convention for compute nodes is cmp000 - c mp\${openstack_compute_co unt}. If the value is 100, for example, the host names for the compute nodes expected by Salt include cmp000, cmp001,, cmp100.

CI/CD product parameters

Section	Default JSON output	Description
CI/CD control node01 address	cicd_control_node01_address: 10.0.1.91	The IP address of the first CI/CD control node

CI/CD control node01 hostname	cicd_control_node01_hostname: cid01	The hostname of the first CI/CD control node
CI/CD control node02 address	cicd_control_node02_address: 10.0.1.92	The IP address of the second CI/CD control nod
CI/CD control node02 hostname	cicd_control_node02_hostname: cid02	The hostname of the second CI/CD control node
CI/CD control node03 address	cicd_control_node03_address: 10.0.1.93	The IP address of the third CI/CD control node
CI/CD control node03 hostname	cicd_control_node03_hostname: cid03	The hostname of the third CI/CD control node
CI/CD control VIP address	cicd_control_vip_address: 10.0.1.90	The virtual IP address of the CI/CD control cluster
CI/CD control VIP hostname	cicd_control_vip_hostname: cid	The hostname of the CI/CD control cluster

OSS parameters

Section	Default JSON output	Description
OSS address	oss_address: \$ {_param:stacklight_monit or_address }	VIP address of the OSS cluster
OSS node01 address	oss_node01_addres: \${_param:stackligh t_monitor01_address}	The IP address of the first OSS node
OSS node02 address	oss_node02_addres: \${_param:stackligh t_monitor02_address}	The IP address of the second OSS node
OSS node03 address	oss_node03_addres: \${_param:stackligh t_monitor03_address}	The IP address of the third OSS node
OSS OpenStack auth URL	oss_openstack_auth_url: http://172.17.1 6.190:5000/v3	OpenStack auth URL for OSS tools
OSS OpenStack username	oss_openstack_username: admin	Username for access to OpenStack
OSS OpenStack password	oss_openstack_password: nova	Password for access to OpenStack
OSS OpenStack project	oss_openstack_project: admin	OpenStack project name
OSS OpenStack domain ID	oss_openstack_domain_id: default	OpenStack domain ID
OSS OpenStack SSL verify	oss_openstack_ssl_verify: 'False'	OpenStack SSL verification mechanism

OSS OpenStack certificate	oss_openstack_cert: "	OpenStack plain CA certificate
OSS OpenStack credentials path	oss_openstack_credentials_path: /srv/vo lumes/rundeck/storage	OpenStack credentials path
OSS OpenStack endpoint type	oss_openstack_endpoint_type: public	Interface type of OpenStack endpoint for service connections
OSS Rundeck external datasource enabled	oss_rundeck_external_datasource_enabl ed: False	Enabled external datasource (PostgreSQL) for Rundeck
OSS Rundeck forward iframe	rundeck_forward_iframe: False	Forward iframe of Rundeck through proxy
OSS Rundeck iframe host	rundeck_iframe_host: \${_param:openst ack_proxy_address}	IP address for Rundeck configuration for proxy
OSS Rundeck iframe port	rundeck_iframe_port: \${_param:haprox y_rundeck_exposed_port}	Port for Rundeck through proxy
OSS Rundeck iframe ssl	rundeck_iframe_ssl: False	Secure Rundeck iframe with SSL
OSS webhook from	oss_webhook_from: TEXT	Required. Notification email sender.
OSS webhook recipients	oss_webhook_recipients: TEXT	Required. Notification email recipients.
OSS Pushkin SMTP host	oss_pushkin_smtp_host: 127.0.0.1	The address of SMTP host for alerts notifications
OSS Pushkin SMTP port	oss_pushkin_smtp_port: 587	The address of SMTP port for alerts notifications
OSS notification SMTP with TLS	oss_pushkin_smtp_use_tls: 'True'	Enable using of the SMTP server under TLS (for alert notifications)
OSS Pushkin email sender password	oss_pushkin_email_sender_password: pa ssword	The sender-mail password for alerts notifications
SFDC auth URL	N/A	Authentication URL for the Salesforce service. For example, sfdc_auth_url: https ://login.salesforce.com/servic es/oauth2/token
SFDC username	N/A	Username for logging in to the Salesforce service. For example, sfdc_username: use r@example.net

SFDC password	N/A	Password for logging in to the Salesforce service. For example, sfdc_password: secret
SFDC consumer key	N/A	Consumer Key in Salesforce required for Open Authorization (OAuth). For example, sfdc_consumer_key : example_consumer_key
SFDC consumer secret	N/A	Consumer Secret from Salesforce required for OAuth. For example, sfdc_con sumer_secret: example_cons umer_secret
SFDC organization ID	N/A	Salesforce Organization ID in Salesforce required for OAuth. For example, sfdc_org anization_id: example_organi zation_id.
SFDC environment ID	sfdc_environment_id: 0	The cloud ID in Salesforce
SFDC Sandbox enabled	sfdc_sandbox_enabled: True	Sandbox environments are isolated from production Salesforce clouds. Enable sandbox to use it for testing and evaluation purposes. Verify that you specify the correct sandbox-url value in the sfdc_auth_url parameter. Otherwise, set the parameter to False.
OSS CIS username	oss_cis_username: \${_param:oss_opens tack_username}	CIS username
OSS CIS password	oss_cis_password: \${_param:oss_openst ack_password}	CIS password
OSS CIS OpenStack auth URL	oss_cis_os_auth_url: \${_param:oss_open stack_auth_url}	CIS OpenStack authentication URL
OSS CIS OpenStack endpoint type	oss_cis_endpoint_type: \${_param:oss_o penstack_endpoint_type}	CIS OpenStack endpoint type
OSS CIS project	oss_cis_project: \${_param:oss_openstac k_project}	CIS OpenStack project

OSS CIS domain ID	oss_cis_domain_id: \${_param:oss_opens tack_domain_id}	CIS OpenStack domain ID
OSS CIS certificate	oss_cis_cacert: \${_param:oss_openstac k_cert}	OSS CIS certificate
OSS CIS jobs repository	oss_cis_jobs_repository: https://github.c om/Mirantis/rundeck-cis-jobs.git	CIS jobs repository
OSS CIS jobs repository branch	oss_cis_jobs_repository_branch: master	CIS jobs repository branch
OSS Security Audit username	oss_security_audit_username: \${_param :oss_openstack_username}	Security audit service username
OSS Security Audit password	oss_security_audit_password: \${_param :oss_openstack_password}	Security Audit service password
OSS Security Audit auth URL	name: oss_security_audit_os_auth_url: \$ {_param:oss_openstack_auth_url}	Security Audit service authentication URL
OSS Security Audit project	<pre>oss_security_audit_project: \${_param:os s_openstack_project}</pre>	Security Audit project name
OSS Security Audit user domain ID	oss_security_audit_user_domain_id: \${_ param:oss_openstack_domain_id}	Security Audit user domain ID
OSS Security Audit project domain ID	oss_security_audit_project_domain_id: \$ {_param:oss_openstack_domain_id}	Security Audit project domain ID
OSS Security Audit OpenStack credentials path	oss_security_audit_os_credentials_path: \${_param:oss_openstack_credentials_p ath}	Path to credentials for OpenStack cloud for the Security Audit service
OSS Cleanup service Openstack credentials path	oss_cleanup_service_os_credentials_pat h: \${_param:oss_openstack_credentials _path}	Path to credentials for OpenStack cloud for the Cleanup service
OSS Cleanup service username	oss_cleanup_username: \${_param:oss_o penstack_username}	Cleanup service username
OSS Cleanup service password	oss_cleanup_password: \${_param:oss_o penstack_password}	Cleanup service password
OSS Cleanup service auth URL	oss_cleanup_service_os_auth_url: \${_pa ram:oss_openstack_auth_url}	Cleanup service authentication URL
OSS Cleanup service project	oss_cleanup_project: \${_param:oss_ope nstack_project}	Cleanup service project name
OSS Cleanup service project domain ID	oss_cleanup_project_domain_id: \${_par am:oss_openstack_domain_id}	Cleanup service project domain ID

OpenContrail service parameters

Section	Default JSON output	Description
OpenContrail analytics address	opencontrail_analytics_address: 10.0.1. 30	The virtual IP address of the OpenContrail analytics cluster
OpenContrail analytics hostname	opencontrail_analytics_hostname: nal	The hostname of the OpenContrail analytics cluster
OpenContrail analytics node01 address	opencontrail_analytics_node01_address: 10.0.1.31	The virtual IP address of the first OpenContrail analytics node on the control network
OpenContrail analytics node01 hostname	opencontrail_analytics_node01_hostnam e: nal01	The hostname of the first OpenContrail analytics node on the control network
OpenContrail analytics node02 address	opencontrail_analytics_node02_address: 10.0.1.32	The virtual IP address of the second OpenContrail analytics node on the control network
OpenContrail analytics node02 hostname	opencontrail_analytics_node02_hostnam e: nal02	The hostname of the second OpenContrail analytics node on the control network
OpenContrail analytics node03 address	opencontrail_analytics_node03_address: 10.0.1.33	The virtual IP address of the third OpenContrail analytics node on the control network
OpenContrail analytics node03 hostname	opencontrail_analytics_node03_hostnam e: nal03	The hostname of the second OpenContrail analytics node on the control network
OpenContrail control address	opencontrail_control_address: 10.0.1.20	The virtual IP address of the OpenContrail control cluster
OpenContrail control hostname	opencontrail_control_hostname: ntw	The hostname of the OpenContrail control cluster
OpenContrail control node01 address	opencontrail_control_node01_address: 1 0.0.1.21	The virtual IP address of the first OpenContrail control node on the control network
OpenContrail control node01 hostname	opencontrail_control_node01_hostname: ntw01	The hostname of the first OpenContrail control node on the control network
OpenContrail control node02 address	opencontrail_control_node02_address: 1 0.0.1.22	The virtual IP address of the second OpenContrail control node on the control network

OpenContrail control node02 hostname	opencontrail_control_node02_hostname: ntw02	The hostname of the second OpenContrail control node on the control network
OpenContrail control node03 address	opencontrail_control_node03_address: 1 0.0.1.23	The virtual IP address of the third OpenContrail control node on the control network
OpenContrail control node03 hostname	opencontrail_control_node03_hostname: ntw03	The hostname of the third OpenContrail control node on the control network
OpenContrail router01 address	opencontrail_router01_address: 10.0.1.1 00	The IP address of the first OpenContrail gateway router for BGP
OpenContrail router01 hostname	opencontrail_router01_hostname: rtr01	The hostname of the first OpenContrail gateway router for BGP
OpenContrail router02 address	opencontrail_router02_address: 10.0.1.1 01	The IP address of the second OpenContrail gateway router for BGP
OpenContrail router02 hostname	opencontrail_router02_hostname: rtr02	The hostname of the second OpenContrail gateway router for BGP

OpenStack product parameters

Section	Default JSON output	Description
Compute primary first NIC	compute_primary_first_nic: eth1	The first NIC in the OpenStack compute bond
Compute primary second NIC	compute_primary_second_nic: eth2	The second NIC in the OpenStack compute bond
Compute bond mode	compute_bond_mode: active-backup	The bond mode for the compute nodes
OpenStack compute rack01 hostname	openstack_compute_rack01_hostname: cmp	The compute hostname prefix
OpenStack compute rack01 single subnet	openstack_compute_rack01_single_subn et: 10.0.0.1	The Control plane network prefix for compute nodes
OpenStack compute rack01 tenant subnet	openstack_compute_rack01_tenant_sub net: 10.0.2	The data plane netwrok prefix for compute nodes

OpenStack control address	openstack_control_address: 10.0.1.10	The virtual IP address of the control cluster on the control network
OpenStack control hostname	openstack_control_hostname: ctl	The hostname of the VIP control cluster
OpenStack control node01 address	openstack_control_node01_address: 10. 0.1.11	The IP address of the first control node on the control network
OpenStack control node01 hostname	openstack_control_node01_hostname: c tl01	The hostname of the first control node
OpenStack control node02 address	openstack_control_node02_address: 10. 0.1.12	The IP address of the second control node on the control network
OpenStack control node02 hostname	openstack_control_node02_hostname: c tl02	The hostname of the second control node
OpenStack control node03 address	openstack_control_node03_address: 10. 0.1.13	The IP address of the third control node on the control network
OpenStack control node03 hostname	openstack_control_node03_hostname: c tl03	The hostname of the third control node
OpenStack database address	openstack_database_address: 10.0.1.50	The virtual IP address of the database cluster on the control network
OpenStack database hostname	openstack_database_hostname: dbs	The hostname of the VIP database cluster
OpenStack database node01 address	openstack_database_node01_address: 1 0.0.1.51	The IP address of the first database node on the control network
OpenStack database node01 hostname	openstack_database_node01_hostname: dbs01	The hostname of the first database node
OpenStack database node02 address	openstack_database_node02_address: 1 0.0.1.52	The IP address of the second database node on the control network
OpenStack database node02 hostname	openstack_database_node02_hostname: dbs02	The hostname of the second database node
OpenStack database node03 address	openstack_database_node03_address: 1 0.0.1.53	The IP address of the third database node on the control network

OpenStack database node03 hostname	openstack_database_node03_hostname: dbs03	The hostname of the third database node
OpenStack message queue address	openstack_message_queue_address: 10 .0.1.40	The vitrual IP address of the message queue cluster on the control network
OpenStack message queue hostname	openstack_message_queue_hostname: msg	The hostname of the VIP message queue cluster
OpenStack message queue node01 address	openstack_message_queue_node01_ad dress: 10.0.1.41	The IP address of the first message queue node on the control network
OpenStack message queue node01 hostname	openstack_message_queue_node01_hos tname: msg01	The hostname of the first message queue node
OpenStack message queue node02 address	openstack_message_queue_node02_ad dress: 10.0.1.42	The IP address of the second message queue node on the control network
OpenStack message queue node02 hostname	openstack_message_queue_node02_hos tname: msg02	The hostname of the second message queue node
OpenStack message queue node03 address	openstack_message_queue_node03_ad dress: 10.0.1.43	The IP address of the third message wueue node on the control network
OpenStack message queue node03 hostname	openstack_message_queue_node03_hos tname: msg03	The hostname of the third message queue node
OpenStack benchmark node01 address	openstack_benchmark_node01_address: 10.0.1.95	The IP address of a benchmark node on the control network
OpenStack benchmark node01 hostname	openstack_benchmark_node01_hostna me: bmk01	The hostname of a becnhmark node
Openstack octavia enabled	False	Enable the Octavia Load Balancing-as-a-Service for OpenStack. Requires OVS OpenStack to be enabled as a networking engine in Infrastructure related parameters.

OpenStack proxy address	openstack_proxy_address: 10.0.1.80	The virtual IP address of a proxy cluster on the control network
OpenStack proxy hostname	openstack_proxy_hostname: prx	The hostname of the VIP proxy cluster
OpenStack proxy node01 address	openstack_proxy_node01_address: 10.0. 1.81	The IP address of the first proxy node on the control network
OpenStack proxy node01 hostname	openstack_proxy_node01_hostname: pr x01	The hostname of the first proxy node
OpenStack proxy node02 address	openstack_proxy_node02_address: 10.0. 1.82	The IP address of the second proxy node on the control network
OpenStack proxy node02 hostname	openstack_proxy_node02_hostname: pr x02	The hostname of the second proxy node
OpenStack version	openstack_version: pike	The version of OpenStack to be deployed
Manila enabled	False	Enable the Manila OpenStack Shared File Systems service
Manila share backend	LVM	Enable the LVM Manila share backend
Manila lvm volume name	manila-volume	The Manila LVM volume name
Manila lvm devices	/dev/sdb,/dev/sdc	The comma-separated paths to the Manila LVM devices
Ironic enabled	false	Enable OpenStack Ironic. For the deployment details, see Deploy Ironic.
Tenant Telemetry enabled	false	Enable Tenant Telemetry based on Ceilometer, Aodh, Panko, and Gnocchi. Disabled by default. If enabled, you can select the Gnocchi aggregation storage type for metrics: ceph, file, or redis storage drivers. Tenant Telemetry does not support integration with StackLight LMA.
Gnocchi aggregation storage	gnocchi_aggregation_storage: file	Storage for aggregated metrics

Designate enabled	designate_enabled: 'False'	Enables OpenStack DNSaaS based on Designate
Designate backend	designate_backend: powerdns	The DNS backend for Designate
OpenStack internal protocol	openstack_internal_protocol: http	The protocol on internal OpenStack endpoints

Kubernetes product parameters

Section	Default JSON output	Description
Calico enable nat	calico_enable_nat: 'True'	If selected, NAT will be enabled for Calico
Calico netmask	16	The netmask of the Calico network
Calico network	192.168.0.0	The network that is used for the Kubernetes containers
etcd SSL	etcd_ssl: 'True'	If selected, the SSL for etcd will be enabled
Kubernetes virtlet enabled	False	Optional. Virtlet enables Kubernetes to run virtual machines. For the enablement details, see Enable Virtlet. Virtlet with OpenContrail is available as technical preview. Use such configuration for testing and evaluation purposes only.
Kubernetes externaldns enabled	False	If selected, ExternalDNS will be deployed. For details, see: Deploy ExternalDNS for Kubernetes.
Kubernetes metrics server enabled	False	If selected, the metrics-server add-on will be deployed to enable horizontal pod autoscaling. For details, see: Enable horizontal pod autoscaling.

Kubernetes rbd monitors	10.0.1.66:6789,10.0.1.67:6789,10.0.1.6 8:6789	A comma-separated list of the Ceph RADOS Block Device (RBD) monitors in a Ceph cluster that will be connected to Kubernetes. This parameter becomes available if you select the Kubernetes rbd enabled option in the Infrastructure parameters section.
Kubernetes rbd pool	kubernetes	A pool in a Ceph cluster that will be connected to Kubernetes. This parameter becomes available if you select the Kubernetes rbd enabled option in the Infrastructure parameters section.
Kubernetes rbd user id	kubernetes	A Ceph RBD user ID of a Ceph cluster that will be connected to Kubernetes. This parameter becomes available if you select the Kubernetes rbd enabled option in the Infrastructure parameters section.
Kubernetes rbd user key	kubernetes_key	A Ceph RBD user key of a Ceph cluster that will be connected to Kubernetes. This parameter becomes available if you select the Kubernetes rbd enabled option in the Infrastructure parameters section.
Kubernetes compute node01 hostname	cmp01	The hostname of the first Kubernetes compute node
Kubernetes compute node01 deploy address	10.0.0.101	The IP address of the first Kubernetes compute node
Kubernetes compute node01 single address	10.0.1.101	The IP address of the first Kubernetes compute node on the Control plane
Kubernetes compute node01 tenant address	10.0.2.101	The tenant IP address of the first Kubernetes compute node
--	------------	--
Kubernetes compute node02 hostname	cmp02	The hostname of the second Kubernetes compute node
Kubernetes compute node02 deploy address	10.0.0.102	The IP address of the second Kubernetes compute node on the deploy network
Kubernetes compute node02 single address	10.0.1.102	The IP address of the second Kubernetes compute node on the control plane
Kubernetes control address	10.0.1.10	The Keepalived VIP of the Kubernetes control nodes
Kubernetes control node01 address	10.0.1.11	The IP address of the first Kubernetes controller node
Kubernetes control node01 deploy address	10.0.0.11	The IP address of the first Kubernetes control node on the deploy network
Kubernetes control node01 hostname	ctl01	The hostname of the first Kubernetes controller node
Kubernetes control node01 tenant address	10.0.2.11	The tenant IP address of the first Kubernetes controller node
Kubernetes control node02 address	10.0.1.12	The IP address of the second Kubernetes controller node
Kubernetes control node02 deploy address	10.0.0.12	The IP address of the second Kubernetes control node on the deploy network
Kubernetes control node02 hostname	ctl02	The hostname of the second Kubernetes controller node
Kubernetes control node02 tenant address	10.0.2.12	The tenant IP address of the second Kubernetes controller node
Kubernetes control node03 address	10.0.1.13	The IP address of the third Kubernetes controller node
Kubernetes control node03 tenant address	10.0.2.13	The tenant IP address of the third Kubernetes controller node

Kubernetes control node03 deploy address	10.0.0.13	The IP address of the third Kubernetes control node on the deploy network
Kubernetes control node03 hostname	ctl03	The hostname of the third Kubernetes controller node
OpenContrail public ip range	10.151.0.0/16	The public floating IP pool for OpenContrail
Opencontrail private ip range	10.150.0.0/16	The range of private OpenContrail IPs used for pods
Kubernetes keepalived vip interface	ens4	The Kubernetes interface used for the Keepalived VIP

StackLight LMA product parameters

Section	Default JSON output	Description
StackLight LMA log address	stacklight_log_address: 10.167.4.60	The virtual IP address of the StackLight LMA logging cluster
StackLight LMA log hostname	stacklight_log_hostname: log	The hostname of the StackLight LMA logging cluster
StackLight LMA log node01 address	stacklight_log_node01_address: 10.167. 4.61	The IP address of the first StackLight LMA logging node
StackLight LMA log node01 hostname	stacklight_log_node01_hostname: log01	The hostname of the first StackLight LMA logging node
StackLight LMA log node02 address	stacklight_log_node02_address: 10.167. 4.62	The IP address of the second StackLight LMA logging node
StackLight LMA log node02 hostname	stacklight_log_node02_hostname: log02	The hostname of the second StackLight LMA logging node
StackLight LMA log node03 address	stacklight_log_node03_address: 10.167. 4.63	The IP address of the third StackLight LMA logging node
StackLight LMA log node03 hostname	stacklight_log_node03_hostname: log03	The hostname of the third StackLight LMA logging node
StackLight LMA monitor address	stacklight_monitor_address: 10.167.4.7 0	The virtual IP address of the StackLight LMA monitoring cluster
StackLight LMA monitor hostname	stacklight_monitor_hostname: mon	The hostname of the StackLight LMA monitoring cluster

StackLight LMA monitor node01 address	stacklight_monitor_node01_address: 10. 167.4.71	The IP address of the first StackLight LMA monitoring node
StackLight LMA monitor node01 hostname	stacklight_monitor_node01_hostname: mon01	The hostname of the first StackLight LMA monitoring node
StackLight LMA monitor node02 address	stacklight_monitor_node02_address: 10. 167.4.72	The IP address of the second StackLight LMA monitoring node
StackLight LMA monitor node02 hostname	stacklight_monitor_node02_hostname: mon02	The hostname of the second StackLight LMA monitoring node
StackLight LMA monitor node03 address	stacklight_monitor_node03_address: 10. 167.4.73	The IP address of the third StackLight LMA monitoring node
StackLight LMA monitor node03 hostname	stacklight_monitor_node03_hostname: mon03	The hostname of the third StackLight LMA monitoring node
StackLight LMA telemetry address	stacklight_telemetry_address: 10.167.4. 85	The virtual IP address of a StackLight LMA telemetry cluster
StackLight LMA telemetry hostname	stacklight_telemetry_hostname: mtr	The hostname of a StackLight LMA telemetry cluster
StackLight LMA telemetry node01 address	stacklight_telemetry_node01_address: 1 0.167.4.86	The IP address of the first StackLight LMA telemetry node
StackLight LMA telemetry node01 hostname	stacklight_telemetry_node01_hostname: mtr01	The hostname of the first StackLight LMA telemetry node
StackLight LMA telemetry node02 address	stacklight_telemetry_node02_address: 1 0.167.4.87	The IP address of the second StackLight LMA telemetry node
StackLight LMA telemetry node02 hostname	stacklight_telemetry_node02_hostname: mtr02	The hostname of the second StackLight LMA telemetry node
StackLight LMA telemetry node03 address	stacklight_telemetry_node03_address: 1 0.167.4.88	The IP address of the third StackLight LMA telemetry node
StackLight LMA telemetry node03 hostname	stacklight_telemetry_node03_hostname: mtr03	The hostname of the third StackLight LMA telemetry node

Long-term storage type	stacklight_long_term_storage_type: pro metheus	The type of the long-term storage Warning InfluxDB, including InfluxDB Relay and remote storage adapter, is deprecated in the Q4`18 MCP release and will be removed in the next release.
OSS webhook login ID	oss_webhook_login_id: 13	The webhook login ID for alerts notifications
OSS webhook app ID	oss_webhook_app_id: 24	The webhook application ID for alerts notifications
Gainsight account ID	N/A	The customer account ID in Salesforce
Gainsight application organization ID	N/A	Mirantis organization ID in Salesforce
Gainsight access key	N/A	The access key for the Salesforce Gainsight service
Gainsight CSV upload URL	N/A	The URL to Gainsight API
Gainsight environment ID	N/A	The customer environment ID in Salesforce
Gainsight job ID	N/A	The job ID for the Salesforce Gainsight service
Gainsight login	N/A	The login for the Salesforce Gainsight service

Ceph product parameters

Section	Default JSON output	Description
Ceph RGW address	ceph_rgw_address: 172.16.47.75	The IP address of the Ceph RGW storage cluster
Ceph RGW hostname	ceph_rgw_hostname: rgw	The hostname of the Ceph RGW storage cluster

Ceph MON node01 address	ceph_mon_node01_address: 172.16.47. 66	The IP address of the first Ceph MON storage node
Ceph MON node01 hostname	ceph_mon_node01_hostname: cmn01	The hostname of the first Ceph MON storage node
Ceph MON node02 address	ceph_mon_node02_address: 172.16.47. 67	The IP address of the second Ceph MON storage node
Ceph MON node02 hostname	ceph_mon_node02_hostname: cmn02	The hostname of the second Ceph MON storage node
Ceph MON node03 address	ceph_mon_node03_address: 172.16.47. 68	The IP address of the third Ceph MON storage node
Ceph MON node03 hostname	ceph_mon_node03_hostname: cmn03	The hostname of the third Ceph MON storage node
Ceph RGW node01 address	ceph_rgw_node01_address: 172.16.47.7 6	The IP address of the first Ceph RGW node
Ceph RGW node01 hostname	ceph_rgw_node01_hostname: rgw01	The hostname of the first Ceph RGW storage node
Ceph RGW node02 address	ceph_rgw_node02_address: 172.16.47.7 7	The IP address of the second Ceph RGW storage node
Ceph RGW node02 hostname	ceph_rgw_node02_hostname: rgw02	The hostname of the second Ceph RGW storage node
Ceph RGW node03 address	ceph_rgw_node03_address: 172.16.47.7 8	The IP address of the third Ceph RGW storage node
Ceph RGW node03 hostname	ceph_rgw_node03_hostname: rgw03	The hostname of the third Ceph RGW storage node
Ceph OSD node count	ceph_osd_node_count: 3	The number of OSD hosts
OSD padding with zeros	osd_padding_with_zeros: 'True'	Enables padding with zeros when generating Ceph OSD host names. For example, name the node as osd001 if enabled, otherwise, osd1
Ceph OSD count	ceph_osd_count: 10	The number of OSDs
Ceph OSD rack01 hostname	ceph_osd_rack01_hostname: osd	The OSD rack01 hostname
Ceph OSD single address ranges	ceph_osd_single_address_ranges	The control plane network ranges for Ceph OSDs. A comma-separated list of IP ranges, for example, 172.16. 10.101-172.16.10.200,172.16 .20.101-172.16.20.200

Ceph OSD backend address ranges	ceph_osd_backend_address_ranges	The cluster network ranges for Ceph OSDs, used to replicate the OSDs data. A comma-separated list of IP ranges, for example, 172.16. 10.101-172.16.10.200,172.16 .20.101-172.16.20.200
Ceph OSD deploy address ranges	ceph_osd_deploy_address_ranges	The deploy network ranges for Ceph OSDs. A comma-separated list of IP ranges, for example, 172.16. 10.101-172.16.10.200,172.16 .20.101-172.16.20.200
Ceph OSD rack01 single subnet	ceph_osd_rack01_single_subnet: 172.16 .47	The control plane network prefix for Ceph OSDs
Ceph OSD rack01 backend subnet	ceph_osd_rack01_backend_subnet: 172. 16.48	The deploy network prefix for Ceph OSDs
Ceph public network	ceph_public_network: 172.16.47.0/24	The IP address of Ceph public network with the network mask
Ceph cluster network	ceph_cluster_network: 172.16.48.70/24	The IP address of Ceph cluster network with the network mask
Ceph OSD block DB size	ceph_osd_block_db_size: 20	The Ceph OSD block DB size in GB
Ceph OSD primary first NIC	ceph_osd_primary_first_nic: eth1	The first NIC of Ceph OSD bond used for Ceph communication
Ceph OSD primary second NIC	ceph_osd_primary_second_nic: eth2	The second NIC of Ceph OSD bond used for Ceph communication
Ceph OSD bond mode	ceph_osd_bond_mode: active-backup	The bonding mode for Ceph OSD communication
Ceph OSD data disks	ceph_osd_data_disks: /dev/vdd,/dev/vde	The list of OSD data disks
Ceph OSD journal or block DB disks	ceph_osd_journal_or_block_db_disks: /de v/vdb,/dev/vdc	The list of journal or block disks

Publish the deployment model to a project repository

If you selected the option to receive the generated deployment model to your email address and customized it as required, you need to apply the model to the project repository.

To publish the metadata model, push the changes to the project Git repository:

git add * git commit -m "Initial commit"

git pull -r git push --set-upstream origin master

Seealso

Deployment automation

Deploy MCP DriveTrain

To reduce the deployment time and eliminate possible human errors, Mirantis recommends that you use the semi-automated approach to the MCP DriveTrain deployment as described in this section.

Caution!

The execution of the CLI commands used in the MCP Deployment Guide requires root privileges. Therefore, unless explicitly stated otherwise, run the commands as a root user or use sudo.

The deployment of MCP DriveTrain bases on the bootstrap automation of the Salt Master node. On a Reclass model creation, you receive the configuration drives by the email that you specified during the deployment model generation.

Depending on the deployment type, you receive the following configuration drives:

- For an online and offline deployment, the configuration drive for the cfg01 VM that is used in cloud-init to set up a virtual machine with Salt Master, MAAS provisioner, Jenkins server, and local Git server installed on it.
- For an offline deployment, the configuration drive for the APT VM that is used in cloud-init to set up a virtual machine with all required repositories mirrors.

|--|

#	Description
1	Manually deploy and configure the Foundation node as described in Prerequisites for MCP DriveTrain deployment.
2	Create the deployment model using the Model Designer web UI as described in Create a deployment metadata model.
3	Obtain the pre-built ISO configuration drive(s) with the Reclass deployment metadata model to you email. If required, customize and regenerate the configuration drives as described in Generate configuration drives manually.
4	Bootstrap the APT node. Optional, for an offline deployment only. For details, see: Deploy the APT node.
5	Bootstrap the Salt Master node that contains MAAS provisioner, Jenkins server, and local Git server. For details, see: Deploy the Salt Master node.
6	Deploy the remaining bare metal servers using the MAAS provisioner. For details, see: Provision physical nodes using MAAS and Deploy physical nodes.
7	Deploy MCP CI/CD using Jenkins as described in Deploy CI/CD.

Prerequisites for MCP DriveTrain deployment

Before you proceed with the actual deployment, verify that you have performed the following steps:

1. Deploy the Foundation physical node using one of the initial versions of Ubuntu Xenial, for example, 16.04.1.

Use any standalone hardware node where you can run a KVM-based day01 virtual machine with an access to the deploy/control network. The Foundation node will host the Salt Master node that also includes the MAAS provisioner by default. For the offline case deployment, the Foundation node will also host the mirror VM.

- 2. Depending on your case, proceed with one of the following options:
 - If you do not have a deployment metadata model:
 - 1. Create a model using the Model Designer UI as described in Create a deployment metadata model.

Note

For an offline deployment, select the Offline deployment and Local repositories options under the Repositories section on the Infrastructure parameters tab.

- 2. Customize the obtained configuration drives as described in Generate configuration drives manually. For example, enable custom user access.
- If you use an already existing model that does not have configuration drives, or you want to generate updated configuration drives, proceed with Generate configuration drives manually.
- 3. Configure the following bridges on the Foundation node: br-mgm for the management network and br-ctl for the control network.
 - 1. Log in to the Foundation node through IPMI.

Note

If the IPMI network is not reachable from the management or control network, add the br-ipmi bridge for the IPMI network or any other network that is routed to the IPMI network.

2. Create PXE bridges to provision network on the foundation node:

brctl addbr br-mgm brctl addbr br-ctl

3. Install the br-ctl utility:

apt install bridge-utils

4. Add the bridges definition for br-mgm and br-ctl to /etc/network/interfaces. Use definitions from your deployment metadata model.

Example:

auto br-mgm iface br-mgm inet static address 172.17.17.200 netmask 255.255.255.192 bridge_ports bond0

- 5. Restart networking from the IPMI console to bring the bonds up.
- 6. Verify that the foundation node bridges are up by checking the output of the ip a show command:

ip a show br-ctl

Example of system response:

```
8: br-ctl: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc noqueue state UP group default qlen 1000
link/ether 00:1b:21:93:c7:c8 brd ff:ff:ff:ff
inet 172.17.45.241/24 brd 172.17.45.255 scope global br-ctl
valid_lft forever preferred_lft forever
inet6 fe80::21b:21ff:fe93:c7c8/64 scope link
valid_lft forever preferred_lft forever
```

- 4. Depending on your case, proceed with one of the following options:
 - If you perform an online deployment, proceed to Deploy the Salt Master node.
 - If you perform the offline deployment or online deployment with local mirrors, proceed to Deploy the APT node.

Deploy the APT node

MCP enables you to deploy the whole MCP cluster without access to the Internet. On creating the metadata model, along with the configuration drive for the cfg01 VM, you will obtain a preconfigured QCOW2 image that will contain packages, Docker images, operating system images, Git repositories, and other software required specifically for the offline deployment.

This section describes how to deploy the apt01 VM using the prebuilt configuration drive.

Warning

Perform the procedure below only in case of an offline deployment or when using a local mirror from the prebuilt image.

To deploy the APT node:

- 1. Verify that you completed steps described in Prerequisites for MCP DriveTrain deployment.
- 2. Log in to the Foundation node.

Note

Root privileges are required for following steps. Execute the commands as a root user or use sudo.

- 3. Download the latest version of the prebuilt http://images.mirantis.com/mcp-offline-image-<BUILD-ID>.qcow2 image for the apt node from http://images.mirantis.com.
- 4. In the /var/lib/libvirt/images/ directory, create an apt01/ subdirectory where the offline mirror image will be stored:

Note

You can create and use a different subdirectory in /var/lib/libvirt/images/. If that is the case, verify that you specify the correct directory for the VM_*DISK variables described in next steps.

mkdir -p /var/lib/libvirt/images/apt01/

5. Save the image on the Foundation node as /var/lib/libvirt/images/apt01/system.qcow2.

6. Copy the configuration ISO drive for the APT VM provided with the metadata model for the offline image to, for example, /var/lib/libvirt/images/apt01/.

Caution!

By default, the prebuilt image does not have a possibility to log in to.

Note

If you are using an already existing model that does not have configuration drives, or you want to generate updated configuration drives, for example, with an unlocked root login for debugging purposes, proceed with Generate configuration drives manually.

cp /path/to/prepared-drive/apt01-config.iso /var/lib/libvirt/images/apt01/apt01-config.iso

7. Deploy the APT node:

1. Download the shell script from GitHub:

export MCP_VERSION="master" wget https://raw.githubusercontent.com/Mirantis/mcp-common-scripts/\${MCP_VERSION}/predefine-vm/define-vm.sh

2. Make the script executable, export the required variables:

```
chmod +x define-vm.sh
export VM_NAME="apt01.<CLUSTER_DOMAIN>"
export VM_SOURCE_DISK="/var/lib/libvirt/images/apt01/system.qcow2"
export VM_CONFIG_DISK="/var/lib/libvirt/images/apt01/apt01-config.iso"
```

The CLUSTER_DOMAIN value is the cluster domain name used for the model. See Basic deployment parameters for details.

Note

You may add other optional variables that have default values and change them depending on your deployment configuration. These variables include:

- VM_MGM_BRIDGE_NAME="br-mgm"
- VM_CTL_BRIDGE_NAME="br-ctl"

- VM_MEM_KB="12589056"
- VM_CPUS="4"

The recommended VM_MEM_KB for the Salt Master node is 12589056 (or more depending on your cluster size) that is 12 GB of RAM. For large clusters, you should also increase VM_CPUS.

The recommended VM_MEM_KB for the local mirror node is 8388608 (or more) that is 8 GB of RAM.

The br-mgm and br-ctl values are the names of the Linux bridges. See Prerequisites for MCP DriveTrain deployment for details. Custom names can be passed to a VM definition using the VM_MGM_BRIDGE_NAME and VM_CTL_BRIDGE_NAME variables accordingly.

3. Run the shell script:

./define-vm.sh

8. Start the apt01 VM:

virsh start apt01.<CLUSTER_DOMAIN>

- 9. For MCP versions prior to the 2019.2.14 maintenance update, perform the following additional steps:
 - 1. SSH to the apt01 node.
 - 2. Verify the certificate:

openssl x509 -checkend 1 -in /var/lib/docker/swarm/certificates/swarm-node.crt

If the certificate has expired, restart Docker Swarm to regenerate it:

systemctl stop docker || true rm -rf /var/lib/docker/swarm/* systemctl restart docker sleep 5 docker ps docker swarm init --advertise-addr 127.0.0.1 sleep 5 cd /etc/docker/compose/docker/ docker stack deploy --compose-file docker-compose.yml docker sleep 5 cd /etc/docker/compose/aptly/ docker stack deploy --compose-file docker-compose.yml aptly sleep 5 docker ps

After completing the steps above, you obtain the apt01 node that contains only the pre-built content. Now, you can proceed with Deploy the Salt Master node. Once you deploy the Salt Master node, you will be able to customize the content of the local mirror, as described in Customize the prebuilt mirror node.

Seealso

- MCP Release Notes: Release artifacts
- Customize the prebuilt mirror node

Deploy the Salt Master node

The Salt Master node acts as a central control point for the clients that are called Salt minion nodes. The minions, in their turn, connect back to the Salt Master node.

This section describes how to set up a virtual machine with Salt Master, MAAS provisioner, Jenkins server, and local Git server. The procedure is applicable to both online and offline MCP deployments.

To deploy the Salt Master node:

1. Log in to the Foundation node.

Note

Root privileges are required for following steps. Execute the commands as a root user or use sudo.

2. In case of an offline deployment, replace the content of the /etc/apt/sources.list file with the following lines:

```
deb [arch=amd64] http://<local_mirror_url>/ubuntu xenial-security main universe restricted deb [arch=amd64] http://<local_mirror_url>/ubuntu xenial-updates main universe restricted deb [arch=amd64] http://<local_mirror_url>/ubuntu xenial main universe restricted
```

3. Create a directory for the VM system disk:

Note

You can create and use a different subdirectory in /var/lib/libvirt/images/. If that is the case, verify that you specify the correct directory for the VM_*DISK variables described in next steps.

mkdir -p /var/lib/libvirt/images/cfg01/

4. Download the day01 image for the cfg01 node:

```
wget http://images.mirantis.com/cfg01-day01-<BUILD_ID>.qcow2 -O \
/var/lib/libvirt/images/cfg01/system.qcow2
```

Substitute <BUILD_ID> with the required MCP Build ID, for example, 2019.2.0.

5. Copy the configuration ISO drive for the cfg01 VM provided with the metadata model for the offline image to, for example, /var/lib/libvirt/images/cfg01/cfg01-config.iso.

Note

If you are using an already existing model that does not have configuration drives, or you want to generate updated configuration drives, for example, with an unlocked root login for debugging purposes, proceed with Generate configuration drives manually.

Caution!

Make sure to securely back up the configuration ISO drive image. This image contains critical information required to re-install your cfg01 node in case of storage failure, including master key for all encrypted secrets in the cluster metadata model.

Failure to back up the configuration ISO image may result in loss of ability to manage MCP in certain hardware failure scenarios.

cp /path/to/prepared-drive/cfg01-config.iso /var/lib/libvirt/images/cfg01/cfg01-config.iso

- 6. Create the Salt Master VM domain definition using the example script:
 - 1. Download the shell scripts from GitHub with the required MCP release version. For example:

export MCP_VERSION="2019.2.0"
git clone https://github.com/Mirantis/mcp-common-scripts -b release/\${MCP_VERSION}

2. Make the script executable and export the required variables:

cd mcp-common-scripts/predefine-vm/ export VM_NAME="cfg01.[CLUSTER_DOMAIN]" export VM_SOURCE_DISK="/var/lib/libvirt/images/cfg01/system.qcow2" export VM_CONFIG_DISK="/var/lib/libvirt/images/cfg01/cfg01-config.iso"

The CLUSTER_DOMAIN value is the cluster domain name used for the model. See Basic deployment parameters for details.

Note

You may add other optional variables that have default values and change them depending on your deployment configuration. These variables include:

- VM_MGM_BRIDGE_NAME="br-mgm"
- VM_CTL_BRIDGE_NAME="br-ctl"
- VM_MEM_KB="12589056"
- VM_CPUS="4"

The recommended VM_MEM_KB for the Salt Master node is 12589056 (or more depending on your cluster size) that is 12 GB of RAM. For large clusters, you should also increase VM CPUS.

The recommended VM_MEM_KB for the local mirror node is 8388608 (or more) that is 8 GB of RAM.

The br-mgm and br-ctl values are the names of the Linux bridges. See Prerequisites for MCP DriveTrain deployment for details. Custom names can be passed to a VM definition using the VM_MGM_BRIDGE_NAME and VM_CTL_BRIDGE_NAME variables accordingly.

3. Run the shell script:

./define-vm.sh

7. Start the Salt Master node VM:

virsh start cfg01.[CLUSTER_DOMAIN]

8. Log in to the Salt Master virsh console with the user name and password that you created in step 4 of the Generate configuration drives manually procedure:

virsh console cfg01.[CLUSTER_DOMAIN]

- 9. If you use local repositories, verify that mk-pipelines are present in /home/repo/mk and pipeline-library is present in /home/repo/mcp-ci after cloud-init finishes. If not, fix the connection to local repositories and run the /var/lib/cloud/instance/scripts/part-001 script.
- 10 Verify that the following states are successfully applied during the execution of cloud-init:

salt-call state.sls linux.system,linux,openssh,salt salt-call state.sls maas.cluster,maas.region,reclass

Otherwise, fix the pillar and re-apply the above states.

11 In case of using kvm01 as the Foundation node, perform the following steps on it:

- 1. Depending on the deployment type, proceed with one of the options below:
 - For an online deployment, add the following deb repository to /etc/apt/sources.list.d/mcp_saltstack.list:

deb [arch=amd64] https://mirror.mirantis.com/<MCP_VERSION>/saltstack-2017.7/xenial/ xenial main

• For an offline deployment or local mirrors case, in /etc/apt/sources.list.d/mcp_saltstack.list, add the following deb repository:

deb [arch=amd64] http://<local_mirror_url>/<MCP_VERSION>/saltstack-2017.7/xenial/ xenial main

- 2. Install the salt-minion package.
- 3. Modify /etc/salt/minion.d/minion.conf:

```
id: <kvm01_FQDN>
master: <Salt_Master_IP_or_FQDN>
```

4. Restart the salt-minion service:

service salt-minion restart

5. Check the output of salt-key command on the Salt Master node to verify that the minion ID of kvm01 is present.

Verify the Salt infrastructure

Before you proceed with the deployment, validate the Reclass model and node pillars.

To verify the Salt infrastructure:

- 1. Log in to the Salt Master node.
- 2. Verify the Salt Master pillars:

reclass -n cfg01.<cluster_domain>

The cluster_domain value is the cluster domain name that you created while preparing your deployment metadata model. See Basic deployment parameters for details.

3. Verify that the Salt version for the Salt minions is the same as for the Salt Master node, that is currently 2017.7:

```
salt-call --version
salt '*' test.version
```

4. If required, enable management of the offline mirror VM (apt01) and customize the VM contents as described in Enable the management of the APT node through the Salt Master node.

Enable the management of the APT node through the Salt Master node

In compliance with the security best practices, MCP enables you to connect your offline mirror APT VM to the Salt Master node and manage it as any infrastructure VM on your MCP deployment.

Note

This section is only applicable for the offline deployments where all repositories are stored on a specific VM deployed using the MCP apt01 offline image, which is included in the MCP release artifacts.

For the deployments managed by the MCP 2018.8.0 Build ID or later, you should not manually enable the Salt minion on the offline image VM as it is configured automatically on boot during the APT VM provisioning.

Though, if your want to enable the management of the offline image VM through the Salt Master node on an existing deployment managed by the MCP version below the 2018.8.0 Build ID, you need to perform the procedure included in this section.

To enable the Salt minion on an existing offline mirror node:

1. Connect to the serial console of your offline image VM, which is included in the pre-built offline APT QCOW image:

virsh console \$(virsh list --all --name | grep ^apt01) --force

Log in with the user name and password that you created in step 4 of the Generate configuration drives manually procedure.

Example of system response:

Connected to domain apt01.example.local Escape character is ^]

- 2. Press Enter to drop into the root shell.
- 3. Configure the Salt minion and start it:

```
echo "" > /etc/salt/minion
echo "master: <IP_address>" > /etc/salt/minion.d/minion.conf
echo "id: <apt01.example.local>" >> /etc/salt/minion.d/minion.conf
service salt-minion stop
rm -f /etc/salt/pki/minion/*
service salt-minion start
```

- 4. Quit the serial console by sending the Ctrl +] combination.
- 5. Log in to the Salt Master node.
- 6. Verify that you have the offline mirror VM Salt minion connected to your Salt Master node:

salt-key -L | grep apt

The system response should include your offline mirror VM domain name. For example:

apt01.example.local

7. Verify that you can access the Salt minion from the Salt Master node:

salt apt01* test.ping

8. Verify the Salt states are mapped to the offline mirror VM:

salt apt01* state.show_top

Now, you can manage your offline mirror APT VM from the Salt Master node. At this point, the Salt Master node does not manage the offline mirror content. If you need to adjust the content of your offline mirror, refer to Customize the prebuilt mirror node.

Configure MAAS for bare metal provisioning

Before you proceed with provisioning of the remaining bare metal nodes, configure MAAS as described below.

To configure MAAS for bare metal provisioning:

- 1. Log in to the MAAS web UI through http://<infra_config_deploy_address>:5240/MAAS with the following credentials:
 - Username: mirantis
 - Password: r00tme
- 2. Go to the Subnets tab.
- 3. Select the fabric that is under the deploy network.
- 4. In the VLANs on this fabric area, click the VLAN under the VLAN column where the deploy network subnet is.
- 5. In the Take action drop-down menu, select Provide DHCP.
- 6. Adjust the IP range as required.

Note

The number of IP addresses should not be less than the number of the planned VCP nodes.

- 7. Click Provide DHCP to submit.
- 8. If you use local package mirrors:

Note

The following steps are required only to specify the local Ubuntu package repositories that are secured by a custom GPG key and used mainly for the offline mirror images prior the MCP version 2017.12.

- 1. Go to Settings > Package repositories.
- 2. Click Actions > Edit on the Ubuntu archive repository.
- 3. Specify the GPG key of the repository in the Key field. The key can be obtained from the aptly_gpg_public_key parameter in the cluster level Reclass model.
- 4. Click Save.

Provision physical nodes using MAAS

Physical nodes host the Virtualized Control Plane (VCP) of your Mirantis Cloud Platform deployment.

This section describes how to provision the physical nodes using the MAAS service that you have deployed on the Foundation node while deploying the Salt Master node.

The servers that you must deploy include at least:

- For OpenStack:
 - kvm02 and kvm03 infrastructure nodes
 - cmp0 compute node
- For Kubernetes:
 - kvm02 and kvm03 infrastructure nodes
 - ctl01, ctl02, ctl03 controller nodes
 - cmp01 and cmp02 compute nodes

You can provision physical nodes automatically or manually:

- An automated provisioning requires you to define IPMI and MAC addresses in your Reclass model. After you enforce all servers, the Salt Master node commissions and provisions them automatically.
- A manual provisioning enables commissioning nodes through the MAAS web UI.

Before you proceed with the physical nodes provisioning, you may want to customize the commissioning script, for example, to set custom NIC names. For details, see: Add custom commissioning scripts.

Warning

Before you proceed with the physical nodes provisioning, verify that BIOS settings enable PXE booting from NICs on each physical server.

Automatically commission and provision the physical nodes

This section describes how to define physical nodes in a Reclass model to automatically commission and then provision the nodes through Salt.

Automatically commission the physical nodes

You must define all IPMI credentials in your Reclass model to access physical servers for automated commissioning. Once you define the nodes, Salt enforces them into MAAS and starts commissioning.

To automatically commission physical nodes:

1. Define all physical nodes under classes/cluster/<cluster>/infra/maas.yml using the following structure.

For example, to define the kvm02 node:

maas:
 region:
 machines:
 kvm02:
 interface:
 mac: 00:25:90:eb:92:4a
 power_parameters:
 power_address: kvm02.ipmi.net
 power_password: password
 power_type: ipmi
 power_user: ipmi_user

Note

To get MAC addresses from IPMI, you can use the ipmi tool. Usage example for Supermicro:

ipmitool -U ipmi_user-P passowrd -H kvm02.ipmi.net raw 0x30 0x21 1| tail -c 18

2. (Optional) Define the IP address on the first (PXE) interface. By default, it is assigned automatically and can be used as is.

For example, to define the kvm02 node:

```
maas:

region:

machines:

kvm02:

interface:

mac: 00:25:90:eb:92:4a

mode: "static"

ip: "2.2.3.15"
```

subnet: "subnet1"
gateway: "2.2.3.2"

- 3. (Optional) Define a custom disk layout or partitioning per server in MAAS. For more information and examples on how to define it in the model, see: Add a custom disk layout per node in the MCP model.
- 4. (Optional) Modify the commissioning process as required. For more information and examples, see: Add custom commissioning scripts.
- 5. Once you have defined all physical servers in your Reclass model, enforce the nodes:

Caution!

For an offline deployment, remove the deb-src repositories from commissioning before enforcing the nodes, since these repositories are not present on the reduced offline apt image node. To remove these repositories, you can enforce MAAS to rebuild sources.list. For example:

export PROFILE="mirantis"
export API_KEY=\$(cat /var/lib/maas/.maas_credentials)
maas login \${PROFILE} http://localhost:5240/MAAS/api/2.0/ \${API_KEY}
REPO_ID=\$(maas \$PROFILE package-repositories read | jq '.[]| select(.name=="main_archive") | .id ')
maas \$PROFILE package-repository update \${REPO_ID} disabled_components=multiverse
maas \$PROFILE package-repository update \${REPO_ID} "disabled_pockets=backports"

The default PROFILE variable is mirantis. You can find your deployment-specific value for this parameter in parameters:maas:region:admin:username of your Reclass model.

For details on building a custom list of repositories, see: MAAS GitHub project.

salt-call maas.process_machines

All nodes are automatically commissioned.

6. Verify the status of servers either through the MAAS web UI or using the salt call command:

salt-call maas.machines_status

The successfully commissioned servers appear in the ready status.

7. Enforce the interfaces configuration defined in the model for servers:

salt-call state.sls maas.machines.assign_ip

.

- 8. To protect any static IP assignment defined, for example, in the model, configure a reserved IP range in MAAS on the management subnet.
- 9. (Optional) Enforce the disk custom configuration defined in the model for servers:

salt-call state.sls maas.machines.storage

10 Verify that all servers have correct NIC names and configurations.

11 Proceed to Provision the automatically commissioned physical nodes.

Provision the automatically commissioned physical nodes

Once you successfully commission your physical nodes, you can start the provisioning.

To provision the automatically commissioned physical nodes through MAAS:

- 1. Log in to the Salt Master node.
- 2. Run the following command:

salt-call maas.deploy_machines

3. Check the status of the nodes:

```
salt-call maas.machines_status
local:
------------
machines:
- hostname:kvm02,system_id:anc6a4,status:Deploying
summary:
-----------
Deploying:
1
```

4. When all servers have been provisioned, perform the verification of the servers` automatic registration by running the salt-key command on the Salt Master node. All nodes should be registered. For example:

salt-key Accepted Keys: cfg01.bud.mirantis.net cmp001.bud.mirantis.net cmp002.bud.mirantis.net kvm02.bud.mirantis.net kvm03.bud.mirantis.net

Now, proceed to Deploy physical nodes.

Manually commission and provision the physical nodes

This section describes how to discover, commission, and provision the physical nodes using the MAAS web UI.

Manually discover and commission the physical nodes

You can discover and commission your physical nodes manually using the MAAS web UI.

To discover and commission physical nodes manually:

- 1. Power on a physical node.
- 2. In the MAAS UI, verify that the server has been discovered.
- 3. On the Nodes tab, rename the discovered host accordingly. Click Save after each renaming.
- 4. In the Settings tab, configure the Commissioning release and the Default Minimum Kernel Version to Ubuntu 16.04 TLS 'Xenial Xerus' and Xenial (hwe-16.04), respectively.

Note

The above step ensures that the NIC naming convention uses the predictable schemas, for example, enp130s0f0 rather than eth0.

- 5. In the Deploy area, configure the Default operating system used for deployment and Default OS release used for deployment to Ubuntu and Ubuntu 16.04 LTS 'Xenial Xerus', respectively.
- 6. Leave the remaining parameters as defaults.
- 7. (Optional) Modify the commissioning process as required. For more information and examples, see: Add custom commissioning scripts.
- 8. Commission the node:
 - 1. From the Take Action drop-down list, select Commission.
 - 2. Define a storage schema for each node.
 - 3. On the Nodes tab, click the required node link from the list.
 - 4. Scroll down to the Available disks and partitions section.
 - 5. Select two SSDs using check marks in the left column.
 - 6. Click the radio button to make one of the disks the boot target.
 - 7. Click Create RAID to create an MD raid1 volume.
 - 8. In RAID type, select RAID 1.
 - 9. In File system, select ext4.
 - 10 Set / as Mount point.
 - 11 Click Create RAID.

The Used disks and partitions section should now look as follows:

.

- 9. Repeat the above steps for each physical node.
- 10 Proceed to Manually provision the physical nodes.

Manually provision the physical nodes

Start the manual provisioning of the physical nodes with the control plane kvm02 and kvm03 physical nodes, and then proceed with the compute cmp01 node deployment.

To manually provision the physical nodes through MAAS:

- 1. Verify that the boot order in the physical nodes' BIOS is set in the following order:
 - 1. PXE
 - 2. The physical disk that was chosen as the boot target in the Maas UI.
- 2. Log in to the MAAS web UI.
- 3. Click on a node.
- 4. Click the Take Action drop-down menu and select Deploy.
- 5. In the Choose your image area, verify that Ubuntu 16.04 LTS 'Xenial Xerus' with the Xenial(hwe-16.04) kernel is selected.
- 6. Click Go to deploy the node.
- 7. Repeat the above steps for each node.

Now, proceed to Deploy physical nodes.

Seealso

Configure PXE booting over UEFI

Deploy physical nodes

After you provision physical nodes as described in Provision physical nodes using MAAS, follow the instruction below to deploy physical nodes intended for an OpenStack-based MCP cluster. If you plan to deploy a Kubernetes-based MCP cluster, proceed with steps 1-2 of the Kubernetes Prerequisites procedure.

Caution!

To avoid the lack of memory for the network driver and ensure its proper operation, specify the minimum reserved kernel memory in your Reclass model on the cluster level for a particular hardware node. For example, use /cluster/<cluster_name>/openstack/compute/init.yml for the OpenStack compute nodes and /cluster/<cluster_name>/infra/kvm.yml for the KVM nodes.

linux:
 system:
 kernel:
 sysctl:
 vm.min_free_kbytes: <min_reserved_memory>

Set the vm.min_free_kbytes value to 4194304 for a node with more than 96 GB of RAM. Otherwise, set not more than 5% of the total RAM on the node.

Note

To change the default kernel version, perform the steps described in Manage kernel version.

To deploy physical servers:

- 1. Log in to the Salt Master node.
- 2. Verify that the cfg01 key has been added to Salt and your host FQDN is shown properly in the Accepted Keys field in the output of the following command:

salt-key

3. Verify that all pillars and Salt data are refreshed:

salt "*" saltutil.refresh_pillar salt "*" saltutil.sync_all 4. Verify that the Reclass model is configured correctly. The following command output should show top states for all nodes:

python -m reclass.cli --inventory

5. To verify that the rebooting of the nodes, which will be performed further, is successful, create the trigger file:

salt -C 'l@salt:control or l@nova:compute or l@neutron:gateway or l@ceph:osd' \ cmd.run "touch /run/is_rebooted"

6. To prepare physical nodes for VCP deployment, apply the basic Salt states for setting up network interfaces and SSH access. Nodes will be rebooted.

Warning

If you use kvm01 as a Foundation node, the execution of the commands below will also reboot the Salt Master node.

Caution!

All hardware nodes must be rebooted after executing the commands below. If the nodes do not reboot for a long time, execute the below commands again or reboot the nodes manually.

Verify that you have a possibility to log in to nodes through IPMI in case of emergency.

1. For KVM nodes:

salt --async -C 'l@salt:control' cmd.run 'salt-call state.sls \ linux.system.repo,linux.system.user,openssh,linux.network;reboot'

2. For compute nodes:

salt --async -C 'l@nova:compute' pkg.install bridge-utils,vlan

salt --async -C 'l@nova:compute' cmd.run 'salt-call state.sls \
linux.system.repo,linux.system.user,openssh,linux.network;reboot'

3. For gateway nodes, execute the following command only for the deployments with OVS setup with physical gateway nodes:

salt --async -C 'l@neutron:gateway' cmd.run 'salt-call state.sls \
linux.system.repo,linux.system.user,openssh,linux.network;reboot'

The targeted KVM, compute, and gateway nodes will stop responding after a couple of minutes. Wait until all of the nodes reboot.

7. Verify that the targeted nodes are up and running:

salt -C 'l@salt:control or l@nova:compute or l@neutron:gateway or l@ceph:osd' \ test.ping

8. Check the previously created trigger file to verify that the targeted nodes are actually rebooted:

salt -C 'l@salt:control or l@nova:compute or l@neutron:gateway' \
cmd.run 'if [-f "/run/is_rebooted"];then echo "Has not been rebooted!";else echo "Rebooted";fi'

All nodes should be in the Rebooted state.

9. Verify that the hardware nodes have the required network configuration. For example, verify the output of the ip a command:

salt -C 'l@salt:control or l@nova:compute or l@neutron:gateway or l@ceph:osd' \ cmd.run "ip a"

Deploy VCP

The virtualized control plane (VCP) is hosted by KVM nodes deployed by MAAS. Depending on the cluster type, the VCP runs Kubernetes or OpenStack services, database (MySQL), message queue (RabbitMQ), Contrail, and support services, such as monitoring, log aggregation, and a time-series metric database. VMs can be added to or removed from the VCP allowing for easy scaling of your MCP cluster.

After the KVM nodes are deployed, Salt is used to configure Linux networking, appropriate repositories, host name, and so on by running the linux Salt state against these nodes. The libvirt packages configuration, in its turn, is managed by running the libvirt Salt state.
Prepare KVM nodes to run the VCP nodes

To prepare physical nodes to run the VCP nodes:

1. On the Salt Master node, prepare the node operating system by running the Salt linux state:

salt-call state.sls linux -l info

Warning

Some formulas may not correctly deploy on the first run of this command. This could be due to a race condition in running the deployment of nodes and services in parallel while some services are dependent on others. Repeat the command execution. If an immediate subsequent run of the command fails again, reboot the affected physical node and re-run the command.

- 2. Prepare physical nodes operating system to run the controller node:
 - 1. Verify the salt-common and salt-minion versions
 - 2. If necessary, Install the correct versions of salt-common and salt-minion.
- 3. Proceed to Create and provision the control plane VMs.

Verify the salt-common and salt-minion versions

To verify the version deployed with the state:

- 1. Log in to the physical node console.
- 2. To verify the salt-common version, run:

apt-cache policy salt-common

3. To verify the salt-minion version, run:

apt-cache policy salt-minion

The output for the commands above must show the 2017.7 version. If you have different versions installed, proceed with Install the correct versions of salt-common and salt-minion.

Install the correct versions of salt-common and salt-minion

This section describes the workaround for salt.virt to properly inject minion.conf.

To manually install the required version of salt-common and salt-minion:

- 1. Log in to the physical node console
- 2. Change the version to 2017.7 in /etc/apt/sources.list.d/salt.list:

deb [arch=amd64] http://repo.saltstack.com/apt/ubuntu/16.04/amd64/2017.7/dists/ xenial main

3. Sync the packages index files:

apt-get update

4. Verify the versions:

apt-cache policy salt-common apt-cache policy salt-minion

5. If the wrong versions are installed, remove them:

apt-get remove salt-minion apt-get remove salt-common

6. Install the required versions of salt-common and salt-minion:

apt-get install salt-common=2017.7 apt-get install salt-minion=2017.7

7. Restart the salt-minion service to ensure connectivity with the Salt Master node:

service salt-minion stop && service salt-minion start

8. Verify that the required version is installed:

apt-cache policy salt-common apt-cache policy salt-minion

9. Repeat the procedure on each physical node.

Partitioning of a VCP node

Starting from the Q4`18 MCP release, the VCP images contain the prebuilt partitioning table. The main VM disk, which is vda, has the following partitions:

- vda1 1 MB partition required for GPT
- vda2 1 GB boot partition
- vda3 Partition with LVM

The mountpoints selection is based on the recommendations from Center for Internet Security (CIS) and inlcude the following:

- root
- home
- /var/log
- /var/log/audit
- /tmp
- /var/tmp

Example of a partition table for a proxy node:

root@prx01:# lsblk /dev/vda
NAME MAJ:MIN RM SIZE RO TYPE MOUNTPOINT
vda 252:0 0 20G 0 disk
-vda2 252:2 0 1002M 0 part /boot
-vda3 252:3 0 19G 0 part
└─vg0-home 253:1 0 100M 0 lvm /home
└─vg0-var_tmp
vg0-tmp 253:2 0 500M 0 lvm /tmp
└─vg0-root 253:0 0 9.5G 0 lvm /
└─vg0-var_log_audit 253:5 0 500M 0 lvm /var/log/audit
└─vg0-var_log 253:3 0 2.9G 0 lvm /var/log
L-vda1 252:1 0 1M 0 part

Specifying the VCP network/disk metadata

Each VCP node has the size parameter associated with it. The size parameter is represented by the salt:control:cluster:internal:node:<VCP_NAME>:size path in Reclass, where <VCP_NAME> is the name of your VCP node. For example, for prx01:

```
root@cfg01:~# salt kvm01* pillar.items salt:control:cluster:internal:node:prx01:size --out json
{
    "kvm01.<CLUSTER_NAME>.local": {
    "salt:control:cluster:internal:node:prx01:size": "openstack.proxy"
    }
}
```

The size parameter defines disk, network, RAM, and CPU metadata per a VCP node class. For example:

```
root@cfg01:~# salt kvm01* pillar.items salt:control:size:openstack.control --out json
{
    "kvm01.<CLUSTER_NAME>.local": {
        "salt:control:size:openstack.control": {
            "net_profile": "default",
            "ram": 32768,
            "cpu": 8,
            "disk_profile": "small"
        }
    }
}
```

The disk_profile parameter is the profile that describes the disk configuration for a VCP node. You can extend a VCP image and connect it to a VM. For example:

```
root@cfg01:~# salt kvm01* pillar.items virt:disk --out json
{
    "kvm01.<CLUSTER_NAME>.local": {
        "virt:disk": {
            "small": [
            {
            "system": {
                "size": 8000
            }
        }
        }
}
```

Passing the cloud-init data to a VCP node

By default, a VCP node is bootstrapped through cloud-init. You can set the cloud-init user_data either on the cluster or node levels. The node level configuration overrides the cloud_init data passed on the cluster level.

The user_data configuration example on the cluster level:

salt: control: enabled: true virt enabled: true cluster: mycluster: domain: neco.virt.domain.com engine: virt # Cluster global settings seed: cloud-init cloud init: user data: disable_ec2_metadata: true resize rootfs: True timezone: UTC ssh deletekeys: True ssh genkeytypes: ['rsa', 'dsa', 'ecdsa'] ssh svcname: ssh locale: en US.UTF-8 disable root: true apt_preserve_sources_list: false apt: sources_list: "" sources: ubuntu.list: source: \${linux:system:repo:ubuntu:source} mcp saltstack.list: source: \${linux:system:repo:mcp saltstack:source}

The user_data configuration example on the node level:

salt: control: cluster: mycluster: node: ubuntu1: provider: node01.domain.com image: ubuntu.qcow size: medium cloud_init: network_data: networks: - <<: *private-ipv4 ip address: 192.168.0.161

Specifying the cloud-init data to grow an LVM-based VCP node

When a VM is spawned, the cloud-init growroot module extends the physical disk to consume all free space. The stages of the partition growth for a VCP node with Logical Volume Management (LVM) include:

1. The growth of a physical disk, which is performed by the growroot module.

To grow a particular physical drive and not the / mounpoint as it is pointed to LVM, you need to pass the following cloud_init data to the cluster level:

_param: salt_control_cluster_vcp_lvm_device: ' <mark>/dev/vda3'</mark> salt:	
control:	
cluster:	
internal:	
seed: cloud-init	
cloud init:	
user data:	
growpart:	
mode: auto	
devices:	
- '/'	
- \${ param:salt control cluster vcp lvm devic	:e}
ignore growroot disabled: false	-

Note

The name of the disk can differ depending on the VCP disk driver. By default, vda as virtio is used.

2. The extension of the LVM physical volume to consume all free disk space.

Configuration example:

```
_param:
salt_control_cluster_vcp_lvm_device: '/dev/vda3'
salt:
```

```
control:
cluster:
internal:
seed: cloud-init
cloud_init:
user_data:
runcmd:
- 'if lvs vg0; then pvresize ${_param:salt_control_cluster_vcp_lvm_device}; fi'
- 'if lvs vg0; then /usr/bin/growlvm.py --image-layout-file /usr/share/growlvm/image-layout.yml; fi'
```

3. The application of the partitioning layout.

The partitioning layout is stored in salt:control:size:openstack.control:image_layout, which is a dictionary with the following schema:

```
{"$schema": "http://json-schema.org/draft-04/schema#",
"title": "Image partition layout",
"type": "object",
"patternProperties": {
   ".*": {"$ref": "#/definitions/logical volume layout"}
},
"definitions": {
   "logical volume layout": {
     "type": "object",
     "properties": {
        "name": {
          "description": "Logical Volume Name",
          "type": "string"
        },
        "size": {
          "description": (
             "Size of Logical volume in units of logical extents."
             "The number might be volume size in units of "
             "megabytes. A size suffix of M for megabytes, G for "
             "gigabytes, T for terabytes, P for petabytes or E for "
             "exabytes is optional. The number can also be "
             "expressed as a percentage of the total space in the "
             "Volume Group with the suffix %VG. Percentage of the "
             "changeble values like free space is not supported."
             ),
        },
        "resizefs": {
          "description": (
             "Resize underlying filesystem together with the "
             "logical volume using fsadm(8)."
          ),
          "type": "boolean"
        },
        "vg": {
           "description": ("Volume group name to resize logical "
```

```
"volume on."),
    "type": "string"
    }
},
    "additionalProperties": False,
    "required": ["size"]
}
}
```

The default partitioning layout is specified in the /srv/salt/reclass/classes/system/defaults/salt/init.yml file.

Configuration example:

```
parameters:
 _param:
  salt_control_size_image_layout_default:
   root:
    size: '30%VG'
   home:
    size: '1G'
   var log:
    size: '11%VG'
   var_log_audit:
    size: '5G'
   var tmp:
    size: '11%VG'
   tmp:
    size: '5G'
  salt_control_size_image_layout_ceph_mon: ${_param:salt_control_size_image_layout_default}
  salt_control_size_image_layout_ceph_rgw: ${_param:salt_control_size_image_layout_default}
```

You can adjust the partitioning layout for a particular size through a soft type parameter. For example, you can describe the partitioning layout for ceph.mon as follows:

```
parameters:

_param:

salt_control_size_image_layout_ceph_mon:

root:

size: '70%VG'

home:

size: '500M'

var_log:

size: '5%VG'

var_log_audit:

size: '1G'

var_tmp:

size: '1G'
```

tmp: size: <mark>'1G</mark>'

Create and provision the control plane VMs

The control plane VMs are created on each node by running the salt state. This state leverages the salt virt module along with some customizations defined in a Mirantis formula called salt-formula-salt. Similarly to how MAAS manages bare metal, the salt virt module creates VMs based on profiles that are defined in the metadata and mounts the virtual disk to add the appropriate parameters to the minion configuration file.

After the salt state successfully runs against a KVM node where metadata specifies the VMs placement, these VMs will be started and automatically added to the Salt Master node.

To create control plane VMs:

1. Log in to the KVM nodes that do not host the Salt Master node. The correct physical node names used in the installation described in this guide to perform the next step are kvm02 and kvm03.

Warning

Otherwise, on running the command in the step below, you will delete the cfg Salt Master.

2. Verify whether virtual machines are not yet present:

```
virsh list --name --all | grep -Ev '^(mas|cfg|apt)' | xargs -n 1 virsh destroy
virsh list --name --all | grep -Ev '^(mas|cfg|apt)' | xargs -n 1 virsh undefine
```

- 3. Log in to the Salt Master node console.
- 4. Verify that the Salt Minion nodes are synchronized by running the following command on the Salt Master node:

salt '*' saltutil.sync_all

5. Perform the initial Salt configuration:

salt 'kvm*' state.sls salt.minion

6. Set up the network interfaces and the SSH access:

salt -C 'l@salt:control' cmd.run 'salt-call state.sls \
linux.system.user,openssh,linux.network;reboot'

Warning

This will also reboot the Salt Master node because it is running on top of kvm01.

- 7. Log in back to the Salt Master node console.
- 8. Run the libvirt state:

salt 'kvm*' state.sls libvirt

- 9. For the OpenStack-based MCP clusters, add system.salt.control.cluster.openstack_gateway_single to infra/kvm.yml to enable a gateway VM for your OpenStack environment. Skip this step for the Kubernetes-based MCP clusters.
- 10 Run salt.control to create virtual machines. This command also inserts minion.conf files . from KVM hosts:

salt 'kvm*' state.sls salt.control

11 Verify that all your Salt Minion nodes are registered on the Salt Master node. This may take . a few minutes.

salt-key

Example of system response:

mon03.bud.mirantis.net msq01.bud.mirantis.net msq02.bud.mirantis.net msq03.bud.mirantis.net mtr01.bud.mirantis.net mtr02.bud.mirantis.net mtr03.bud.mirantis.net nal01.bud.mirantis.net nal02.bud.mirantis.net nal03.bud.mirantis.net ntw01.bud.mirantis.net ntw02.bud.mirantis.net ntw03.bud.mirantis.net prx01.bud.mirantis.net prx02.bud.mirantis.net ...

Seealso

Manage kernel version

Deploy CI/CD

The automated deployment of the MCP components is performed through CI/CD that is a part of MCP DriveTrain along with SaltStack and Reclass. CI/CD, in its turn, includes Jenkins, Gerrit, and MCP Registry components. This section explains how to deploy a CI/CD infrastructure.

To deploy CI/CD automatically:

- 1. Deploy a customer-specific CI/CD using Jenkins as part of, for example, an OpenStack cloud environment deployment:
 - 1. Log in to the Jenkins web UI available at salt_master_management_address:8081 with the following credentials:
 - Username: admin
 - Password: r00tme
 - 2. Use the Deploy OpenStack pipeline to deploy cicd cluster nodes as described in Deploy an OpenStack environment. Start with Step 7 in case of the online deployment and with Step 8 in case of the offline deployment.
- 2. Once the cloud environment is deployed, verify that the cicd cluster is up and running.
- 3. Disable the Jenkins service on the Salt Master node:
 - For the MCP versions 2018.11.0 and below:

systemctl stop jenkins systemctl disable jenkins

• For the MCP versions 2019.2.0 and newer, add following pillars to infra/config/jenkins.yml:

parameters:
docker:
client:
stack:
jenkins:
service:
master:
deploy:
replicas: 0
slave01:
deploy:
replicas: 0

4. Skip the jenkins.client state on the Salt Master node by adding the following pillars to infra/config/jenkins.yml:

parameters: jenkins: client: enabled: false

5. Refresh pillars on the Salt Master node:

salt-call saltutil.clear_cache && salt-call saltutil.refresh_pillar

6. For the MCP versions 2019.2.0 and newer, update the Jenkins service configuration in Docker on the Salt Master node:

salt-call state.apply docker.client

Seealso

- Enable a watchdog
- Manage kernel version

Deploy an MCP cluster using DriveTrain

After you have installed the MCP CI/CD infrastructure as descibed in Deploy CI/CD, you can reach the Jenkins web UI through the Jenkins master IP address. This section contains procedures explaining how to deploy OpenStack environments and Kubernetes clusters using CI/CD pipelines.

Note

For production environments, CI/CD should be deployed on a per-customer basis.

For testing purposes, you can use the central Jenkins lab that is available for Mirantis employees only. To be able to configure and execute Jenkins pipelines using the lab, you need to log in to the Jenkins web UI with your Launchpad credentials.

Deploy an OpenStack environment

This section explains how to configure and launch the OpenStack environment deployment pipeline. This job is run by Jenkins through the Salt API on the functioning Salt Master node and deployed hardware servers to set up your MCP OpenStack environment.

Run this Jenkins pipeline after you configure the basic infrastructure as described in Deploy MCP DriveTrain. Also, verify that you have successfully applied the linux and salt states to all physical and virtual nodes for them not to be disconnected during network and Salt Minion setup.

Note

For production environments, CI/CD should be deployed on a per-customer basis.

For testing purposes, you can use the central Jenkins lab that is available for Mirantis employees only. To be able to configure and execute Jenkins pipelines using the lab, you need to log in to the Jenkins web UI with your Launchpad credentials.

To automatically deploy an OpenStack environment:

- 1. Log in to the Salt Master node.
- 2. For the OpenContrail setup, add the version-specific parameters to the <cluster_name>/opencontrail/init.yml file of your Reclass model. For example:

parameters: _param: opencontrail_version: 4.1 linux_repo_contrail_component: oc41

3. Set up network interfaces and the SSH access on all compute nodes:

salt -C 'l@nova:compute' cmd.run 'salt-call state.sls \
linux.system.user,openssh,linux.network;reboot'

4. If you run OVS, run the same command on physical gateway nodes as well:

salt -C 'l@neutron:gateway' cmd.run 'salt-call state.sls \
linux.system.user,openssh,linux.network;reboot'

5. Verify that all nodes are ready for deployment:

salt '*' state.sls linux,ntp,openssh,salt.minion

Caution!

If any of these states fails, fix the issue provided in the output and re-apply the state before you proceed to the next step. Otherwise, the Jenkins pipeline will fail.

6. In a web browser, open http://<ip address>:8081 to access the Jenkins web UI.

Note

The IP address is defined in the classes/cluster/<cluster_name>/cicd/init.yml file of the Reclass model under the cicd_control_address parameter variable.

7. Log in to the Jenkins web UI as admin.

Note

.

To obtain the password for the admin user, run the salt "cid*" pillar.data _param:jenkins_admin_password command from the Salt Master node.

- 8. In the global view, verify that the git-mirror-downstream-mk-pipelines and git-mirror-downstream-pipeline-library pipelines have successfully mirrored all content.
- 9. Find the Deploy OpenStack job in the global view.
- 10 Select the Build with Parameters option from the drop-down menu of the Deploy . OpenStack job.
- 11 Specify the following parameters:

Deploy - OpenStack environment parameters

Parameter	Description and values
ASK_ON_ERROR	If checked, Jenkins will ask either to stop a pipeline or continue execution in case of Salt state fails on any task

STACK_INSTALL	Specifies the components you need to install. The available values include:	
	• core	
	• kvm	
	• cicd	
	• openstack	
	 ovs or contrail depending on the network plugin. 	
	• ceph	
	• stacklight	
	• OSS	
	Note	
	For the details regarding StackLight LMA (stacklight) with the DevOps Portal (oss) deployment, see Deploy StackLight LMA with the DevOps Portal.	
BATCH_SIZE Added since 2019.2.6 update	The batch size for Salt commands targeted for a large amount of nodes. Disabled by default. Set to an absolute number of nodes (integer) or percentage, for example, 20 or 20%. For details, see Configure Salt Master threads and batching.	
DIST_UPGRADE_NODES Added since 2019.2.8 update	Select to run apt-get dist-upgrade on all cluster nodes before deployment. Disabled by default.	
SALT_MASTER_CREDEN TIALS	Specifies credentials to Salt API stored in Jenkins, included by default. See View credentials details used in Jenkins pipelines for details.	
SALT_MASTER_URL	Specifies the reachable IP address of the Salt Master node and port on which Salt API listens. For example, http://172.18.170.28:6969 To find out on which port Salt API listens:	
	1. Log in to the Salt Master node.	
	2. Search for the port in the /etc/salt/master.d/_api.conf file.	
	3. Verify that the Salt Master node is listening on that port:	
	netstat -tunelp grep <port></port>	
STACK_TYPE	Specifies the environment type. Use physical for a bare metal deployment	

- 12 Click Build.
- 13 Once done, configure the Salt Master node password expiration as described in Modify Salt . Master password expiration.

Seealso

- View the deployment details
- Enable a watchdog
- MCP 2019.2.3 Maintenance Update: Known issues

Deploy a multi-site OpenStack environment

MCP DriveTrain enables you to deploy several OpenStack environments at the same time.

Note

For production environments, CI/CD should be deployed on a per-customer basis.

For testing purposes, you can use the central Jenkins lab that is available for Mirantis employees only. To be able to configure and execute Jenkins pipelines using the lab, you need to log in to the Jenkins web UI with your Launchpad credentials.

To deploy a multi-site OpenStack environment, repeat the Deploy an OpenStack environment procedure as many times as you need specifying different values for the SALT_MASTER_URL parameter.

Seealso

View the deployment details

Deploy a Kubernetes cluster

Caution!

Kubernetes support termination notice

Starting with the MCP 2019.2.5 update, the Kubernetes component is no longer supported as a part of the MCP product. This implies that Kubernetes is not tested and not shipped as an MCP component. Although the Kubernetes Salt formula is available in the community driven SaltStack formulas ecosystem, Mirantis takes no responsibility for its maintenance.

Customers looking for a Kubernetes distribution and Kubernetes lifecycle management tools are encouraged to evaluate the Mirantis Kubernetes-as-a-Service (KaaS) and Docker Enterprise products.

The MCP Containers as a Service architecture enables you to easily deploy a Kubernetes cluster on bare metal with Calico plugin set for Kubernetes networking.

Caution!

OpenContrail 4.x for Kubernetes 1.12 or later is not supported.

This section explains how to configure and launch the Kubernetes cluster deployment pipeline using DriveTrain.

You can enable an external Ceph RBD storage in your Kubernetes cluster as required. For new deployments, enable the corresponding parameters while creating your deployment metadata model as described in Create a deployment metadata model. For existing deployments, follow the Enable an external Ceph RBD storage procedure.

You can also deploy ExternalDNS to set up a DNS management server in order to control DNS records dynamically through Kubernetes resources and make Kubernetes resources discoverable through public DNS servers.

If you have a predeployed OpenStack environment, you can deploy a Kubernetes cluster on top of OpenStack and enable the OpenStack cloud provider functionality. It allows you to leverage Cinder volumes and Neutron LBaaS (Octavia) that enhance the Kubernetes cluster functionality.

^{Added in 2019.2.3} If you want to enable Helm for managing Kubernetes charts, configure your deployment model as described in Enable Helm support. Once configured, Helm will be deployed on the Kubernetes cluster using the corresponding DriveTrain pipeline.

Depending on your cluster configuration, proceed with one of the sections listed below.

Note

For production environments, CI/CD should be deployed on a per-customer basis.

For testing purposes, you can use the central Jenkins lab that is available for Mirantis employees only. To be able to configure and execute Jenkins pipelines using the lab, you need to log in to the Jenkins web UI with your Launchpad credentials.

Prerequisites

Before you proceed with an automated deployment of a Kubernetes cluster, follow the steps below:

- 1. If you have swap enabled on the ctl and cmp nodes, modify your Kubernetes deployment model as described in Add swap configuration to a Kubernetes deployment model.
- 2. Deploy DriveTrain as described in Deploy MCP DriveTrain.

Now, proceed to deploying Kubernetes as described in Deploy a Kubernetes cluster on bare metal.

Deploy a Kubernetes cluster on bare metal

This section provides the steps to deploy a Kubernetes cluster on bare metal nodes configured using MAAS with Calico as a Kubernetes networking plugin.

Caution!

OpenContrail 4.x for Kubernetes 1.12 or later is not supported.

To automatically deploy a Kubernetes cluster on bare metal nodes:

- 1. Verify that you have completed the steps described in Prerequisites.
- 2. Log in to the Jenkins web UI as Administrator.

Note

To obtain the password for the admin user, run the salt "cid*" pillar.data _param:jenkins_admin_password command from the Salt Master node.

- 3. Find the k8s_ha_calico heat pipeline job in the global view.
- 4. Select the Build with Parameters option from the drop-down menu of the selected job.
- 5. Configure the deployment by setting the following parameters as required:

Deployment parameters

Par am ete r	Defualt value	Description
ASK _ON _ER ROR	False	If True, Jenkins will stop on any failure and ask either you want to cancel the pipeline or proceed with the execution ignoring the error.

SAL T_M AST ER_ CRE DEN TIAL S	<your_salt_master_crede NTIALS_ID></your_salt_master_crede 	The Jenkins ID of credentials for logging in to the Salt API. For example, salt-credentials. See View credentials details used in Jenkins pipelines for details.
SAL T_M AST ER_ URL	<your_salt_master_url></your_salt_master_url>	The URL to access the Salt Master node.
STA CK_I NST ALL	Select core,k8s,calico	Components to install.
STA CK_ TES T	Empty	The names of the cluster components to test. By default, nothing is tested.
STA CK_ TYP E	physical	The type of the cluster.

- 6. Click Build to launch the pipeline.
- 7. Click Full stage view to track the deployment process.

The following table contains the stages details for the deployment with Calico as a Kubernetes networking plugin:

The deploy pipeline workflow

#	Title	Details
1	Create infrastructure	Creates a base infrastructure using MAAS.
2	Install core infrastructure	 Prepares and validates the Salt Master node and Salt Minion nodes. For example, refreshes pillars and synchronizes custom modules.
		 Applies the linux,openssh,salt.minion,ntp states to all nodes.

3	Install Kubernetes infrastructure	 Reads the control plane load-balancer address and applies it to the model.
		2. Generates the Kubernetes certificates.
		 Installs the Kubernetes support packages that include Keepalived, HAProxy, containerd, and etcd.
4	Install the Kubernetes control plane and networking plugins	 Installs Calico. Sets up etcd.
		3. Installs the control plane nodes.

8. When the pipeline has successfully executed, log in to any Kubernetes ctl node and verify that all nodes have been registered successfully:

kubectl get nodes

Seealso

View the deployment details

Deploy ExternalDNS for Kubernetes

ExternalDNS deployed on Mirantis Cloud Platform (MCP) allows you to set up a DNS management server for Kubernetes starting with version 1.7. ExternalDNS enables you to control DNS records dynamically through Kubernetes resources and make Kubernetes resources discoverable through public DNS servers. ExternalDNS synchronizes exposed Kubernetes Services and Ingresses with DNS cloud providers, such as Designate, AWS Route 53, Google CloudDNS, and CoreDNS.

ExternalDNS retrieves a list of resources from the Kubernetes API to determine the desired list of DNS records. It synchronizes the DNS service according to the current Kubernetes status.

ExternalDNS can use the following DNS backend providers:

- AWS Route 53 is a highly available and scalable cloud DNS web service. Amazon Route 53 is fully compliant with IPv6.
- Google CloudDNS is a highly available, scalable, cost-effective, and programmable DNS service running on the same infrastructure as Google.
- OpenStack Designate can use different DNS servers including Bind9 and PowerDNS that are supported by MCP.
- CoreDNS is the next generation of SkyDNS that can use etcd to accept updates to DNS entries. It functions as an on-premises open-source alternative to cloud DNS services (DNSaaS). You can deploy CoreDNS with ExternalDNS if you do not have an active DNS backend provider yet.

This section describes how to configure and set up ExternalDNS on a new or existing MCP Kubernetes-based cluster.

Prepare a DNS backend for ExternalDNS

Depending on your DNS backend provider, prepare your backend and the metadata model of your MCP cluster before setting up ExternalDNS. If you do not have an active DNS backend provider yet, you can use CoreDNS that functions as an on-premises open-source alternative to cloud DNS services.

To prepare a DNS backend

Select from the following options depending on your DNS backend:

- For AWS Route 53:
 - 1. Log in to your AWS Route 53 console.
 - 2. Navigate to the AWS Services page.
 - 3. In the search field, type "Route 53" to find the corresponding service page.
 - 4. On the Route 53 page, find the DNS management icon and click Get started now.
 - 5. On the DNS management page, click Create hosted zone.

6. On the right side of the Create hosted zone window:

- 1. Add <your_mcp_domain.>.local name.
- 2. Select the Public Hosted Zone type.
- 3. Click Create.

You will be redirected to the previous page with two records of NS and SOA type. Keep the link of this page for verification after the ExernalDNS deployment.

- 7. Click Back to Hosted zones.
- 8. Locate and copy the Hosted Zone ID in the corresponding column of your recently created hosted zone.
- 9. Add this ID to the following template:

```
"Effect" : "Allow",
        "Action" : [
          "route53:GetChange"
        ],
        "Resource" : [
          "arn:aws:route53:::change/*"
       ]
     },
     {
       "Effect" : "Allow",
        "Action" " [
          "route53:ListHostedZones"
        ],
        "Resource" : [
          "*"
       1
      }
  ]
}
```

10 Navigate to Services > IAM > Customer Managed Policies.

11 Click Create Policy > Create your own policy.

12 Fill in the required fields:

• Policy Name field: externaldns

Policy Document field: use the JSON template provided in step 9

13 Click Validate Policy.

14 Click Create Policy. You will be redirected to the policy view page.

15 Navigate to Users.

16 Click Add user:

- 1. Add a user name: extenaldns.
- 2. Select the Programmatic access check box.
- 3. Click Next: Permissions.
- 4. Select the Attach existing policy directly option.
- 5. Select the Customer managed policy type in the Filter drop-down menu.
- 6. Select the externaldns check box.

- 7. Click Next: Review.
- 8. Click Create user.
- 9. Copy the Access key ID and Secret access key.
- For Google CloudDNS:
 - 1. Log in to your Google Cloud Platform web console.
 - 2. Navigate to IAM & Admin > Service accounts > Create service account.
 - 3. In the Create service account window, configure your new ExernalDNS service account:
 - 1. Add a service account name.
 - 2. Assign the DNS Administrator role to the account.
 - 3. Select the Furnish a new private key check box and the JSON key type radio button.

The private key is automatically saved on your computer.

- 4. Navigate to NETWORKING > Network services > Cloud DNS.
- 5. Click CREATE ZONE to create a DNS zone that will be managed by ExternalDNS.
- 6. In the Create a DNS zone window, fill in the following fields:
 - Zone name
 - DNS name that must contain your MCP domain address in the <your_mcp_domain>.local format.
- 7. Click Create.

You will be redirected to the Zone details page with two DNS names of the NS and SOA type. Keep this page for verification after the ExernalDNS deployment.

- For Designate:
 - 1. Log in to the Horizon web UI of your OpenStack environment with Designate.
 - 2. Create a project with the required admin role as well as generate the access credentials for the project.
 - 3. Create a hosted DNS zone in this project.

• For CoreDNS, proceed to Configure cluster model for ExternalDNS. Now, proceed to Configure cluster model for ExternalDNS. Configure cluster model for ExternalDNS

After you prepare your DNS backend as described in Prepare a DNS backend for ExternalDNS, prepare your cluster model as described below.

To configure the cluster model:

- 1. Select from the following options:
 - If you are performing the initial deployment of your MCP Kubernetes cluster:
 - 1. Use the ModelDesigner UI to create the Kubernetes cluster model. For details, see: Create a deployment metadata model.
 - 2. While creating the model, select the Kubernetes externaldns enabled check box in the Kubernetes product parameters section.
 - If you are making changes to an existing MCP Kubernetes cluster, proceed to the next step.
- 2. Open your Git project repository.
- 3. In classes/cluster/<cluster_name>/kubernetes/control.yml:
 - 1. If you are performing the initial deployment of your MCP Kubernetes cluster, configure the provider parameter in the snippet below depending on your DNS provider: coredns|aws|google|designate. If you are making changes to an existing cluster, add and configure the snippet below. For example:

parameters: kubernetes:
common:
addons:
externaldns:
enabled: True
namespace: kube-system
image: mirantis/external-dns:latest
domain: domain
provider: coredns

- 2. Set up the pillar data for your DNS provider to configure it as an add-on. Use the credentials generated while preparing your DNS provider.
 - For Designate:

```
parameters:
kubernetes:
common:
addons:
externaldns:
externaldns:
enabled: True
```

domain: company.mydomain provider: designate designate_os_options: OS_AUTH_URL: https://keystone_auth_endpoint:5000 OS_PROJECT_DOMAIN_NAME: default OS_USER_DOMAIN_NAME: default OS_PROJECT_NAME: admin OS_USERNAME: admin OS_PASSWORD: password OS_REGION_NAME: RegionOne

• For AWS Route 53:

arameters:
cubernetes:
common:
addons:
externaldns:
externaldns:
enabled: True
domain: company.mydomain
provider: aws
aws_options:
AWS_ACCESS_KEY_ID: XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
AWS_SECRET_ACCESS_KEY: XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX

• For Google CloudDNS:

parameters:
kubernetes:
common:
addons:
externaldns:
externaldns:
enabled: True
domain: company.mydomain
provider : google
google_options:
key: "
<pre>project: default-123</pre>

Note

You can export the credentials from the Google console and process them using the cat key.json \mid tr -d 'n' command.

• For CoreDNS:

parameters:
kubernetes:
common:
addons:
coredns:
enabled: True
namespace : kube-system
image: coredns/coredns:latest
etcd:
operator_image : quay.io/coreos/etcd-operator:v0.5.2
version: 3.1.8
<pre>base_image: quay.io/coreos/etcd</pre>

- 4. Commit and push the changes to the project Git repository.
- 5. Log in to the Salt Master node.
- 6. Update your Salt formulas and the system level of your repository:
 - 1. Change the directory to /srv/salt/reclass.
 - 2. Run the git pull origin master command.
 - 3. Run the salt-call state.sls salt.master command.
 - 4. Run the salt-call state.sls reclass command.

Now, proceed to Deploy ExternalDNS.

Deploy ExternalDNS

Before you deploy ExternalDNS, complete the steps described in Configure cluster model for ExternalDNS.

To deploy ExternalDNS

Select from the following options:

- If you are performing the initial deployment of your MCP Kubernetes cluster, deploy a Kubernetes cluster as described in Deploy a Kubernetes cluster on bare metal. The ExternalDNS will be deployed automatically by the MCP DriveTrain pipeline job during the Kubernetes cluster deployment.
- If you are making changes to an existing MCP Kubernetes cluster, apply the following state:

salt --hard-crash --state-output=mixed --state-verbose=False -C \
'l@kubernetes:master' state.sls kubernetes.master.kube-addons

Once the state is applied, the kube-addons.sh script applies the Kubernetes resources and they will shortly appear in the Kubernetes resources list.

Verify ExternalDNS after deployment

After you complete the steps described in Deploy ExternalDNS, verify that ExternalDNS is up and running using the procedures below depending on your DNS backend.
Verify ExternalDNS with Designate backend after deployment

After you complete the steps described in Deploy ExternalDNS, verify that ExternalDNS is successfully deployed with Designate backend using the procedure below.

To verify ExternalDNS with Designate backend:

- 1. Log in to any Kubernetes Master node.
- 2. Source the openrc file of your OpenStack environment:

source keystonerc

Note

If you use Keystone v3, use the source keystonercv3 command instead.

- 3. Open the Designate shell using the designate command.
- 4. Create a domain:

domain-create --name nginx.<your_mcp_domain>.local. --email <your_email>

Example of system response:

+-----+ | Field | Value | description | None created at | 2017-10-13T16:23:26.533547 | updated at | None email | designate@example.org |serial |1423844606 | ttl 3600 | id | ae59d62b-d655-49a0-ab4b-ea536d845a32 | | name | nginx.virtual-mcp11-k8s-calico.local. | +-----+

5. Verify that the domain was successfully created. Use the id parameter value from the output of the command described in the previous step. Keep this value for further verification steps.

For example:

record-list ae59d62b-d655-49a0-ab4b-ea536d845a32

Example of system response:

+---+---+ |id | type | name | data | +---+---+ |... | NS | nginx.virtual-mcp11-k8s-calico.local. | dns01.bud.mirantis.net.| +---+---+

6. Start my-nginx:

kubectl run my-nginx --image=nginx --port=80

Example of system response:

deployment "my-nginx" created

7. Expose my-nginx:

kubectl expose deployment my-nginx --port=80 --type=ClusterIP

Example of system response:

service "my-nginx" exposed

8. Annotate my-nginx:

kubectl annotate service my-nginx \
"external-dns.alpha.kubernetes.io/hostname=nginx.<your_domain>.local."

Example of system response:

service "my-nginx" annotated

9. Verify that the domain was associated with the IP inside a Designate record by running the record-list [id] command. Use the id parameter value from the output of the command described in step 4. For example:

record-list ae59d62b-d655-49a0-ab4b-ea536d845a32

Example of system response:

+++	+	+
id type name	data	1
++	+	+
NS nginx.virtual-mcp11-k8s-calico.local. dns01.bud.mirantis.net.		

++
A nginx.virtual-mcp11-k8s-calico.local. 10.254.70.16
+++
TXT nginx.virtual-mcp11-k8s-calico.local. "heritage=external-dns,external-dns/owner=my-identifier"
++

Verify ExternalDNS with CoreDNS backend after deployment

After you complete the steps described in Deploy ExternalDNS, verify that ExternalDNS is successfully deployed with CoreDNS backend using the procedure below.

To verify ExternalDNS with CoreDNS backend:

- 1. Log in to any Kubernetes Master node.
- 2. Start my-nginx:

kubectl run my-nginx --image=nginx --port=80

Example of system response:

deployment "my-nginx" created

3. Expose my-nginx:

kubectl expose deployment my-nginx --port=80 --type=ClusterIP

Example of system response:

service "my-nginx" exposed

4. Annotate my-nginx:

kubectl annotate service my-nginx \
"external-dns.alpha.kubernetes.io/hostname=nginx.<your_domain>.local."

Example of system response:

service "my-nginx" annotated

5. Get the IP of DNS service:

kubectl get svc coredns -n kube-system | awk '{print \$2}' | tail -1

Example of system response:

10.254.203.8

- 6. Select from the following options:
 - If your Kubernetes networking is Calico, run the following command from any Kubernetes Master node.

• If your Kubernetes networking is OpenContrail, run the following command from any Kubernetes pod.

nslookup nginx.<your_domain>.local. <coredns_ip>

Example of system response:

Server: 10.254.203.8 Address: 10.254.203.8#53 Name: test.my_domain.local Address: 10.254.42.128 Verify ExternalDNS with Google CloudDNS backend after deployment

After you complete the steps described in Deploy ExternalDNS, verify that ExternalDNS is successfully deployed with Google CloudDNS backend using the procedure below.

To verify ExternalDNS with Google CloudDNS backend:

- 1. Log in to any Kubernetes Master node.
- 2. Start my-nginx:

kubectl run my-nginx --image=nginx --port=80

Example of system response:

deployment "my-nginx" created

3. Expose my-nginx:

kubectl expose deployment my-nginx --port=80 --type=ClusterIP

Example of system response:

service "my-nginx" exposed

4. Annotate my-nginx:

kubectl annotate service my-nginx \
"external-dns.alpha.kubernetes.io/hostname=nginx.<your_domain>.local."

Example of system response:

service "my-nginx" annotated

- 5. Log in to your Google Cloud Platform web console.
- 6. Navigate to the Cloud DNS > Zone details page.
- 7. Verify that your DNS zone now has two more records of the A and TXT type. Both records must point to nginx.<your_domain>.local.

Verify ExternalDNS with AWS Route 53 backend after deployment

After you complete the steps described in Deploy ExternalDNS, verify that ExternalDNS is successfully deployed with AWS Route 53 backend using the procedure below.

To verify ExternalDNS with AWS Route 53 backend:

- 1. Log in to any Kubernetes Master node.
- 2. Start my-nginx:

kubectl run my-nginx --image=nginx --port=80

Example of system response:

deployment "my-nginx" created

3. Expose my-nginx:

kubectl expose deployment my-nginx --port=80 --type=ClusterIP

Example of system response:

service "my-nginx" exposed

4. Annotate my-nginx:

kubectl annotate service my-nginx \
"external-dns.alpha.kubernetes.io/hostname=nginx.<your_domain>.local."

Example of system response:

service "my-nginx" annotated

- 5. Log in to your AWS Route 53 console.
- 6. Navigate to the Services > Route 53 > Hosted zones > YOUR_ZONE_NAME page.
- 7. Verify that your DNS zone now has two more records of the A and TXT type. Both records must point to nginx.<your_domain>.local.

Deploy OpenStack cloud provider for Kubernetes

Note

This feature is available as technical preview in the MCP Build ID 2019.2.0. Starting from the MCP 2019.2.2 update, the feature is fully supported.

If you have a predeployed OpenStack environment, you can deploy a Kubernetes cluster on VMs on top of OpenStack and enable the OpenStack cloud provider functionality.

The OpenStack cloud provider allows you to leverage Cinder volumes and Neutron LBaaS (Octavia) that enhance the Kubernetes cluster functionality.

The two main functions provided by the OpenStack cloud provider are PersistentVolume for pods and LoadBalancer for services.

Considerations when using the OpenStack cloud provider

The OpenStack cloud provider for Kubernetes has several requirements in OpenStack, which are outlined in the OpenStack cloud provider Overview section.

In addition to component requirements, there are operational requirements:

- Instance names must have a proper DNS label, consisting of letters, numbers, and dashes, ending with an alphanumeric character. Underscores and other symbols are invalid.
- All Kubernetes nodes must be Nova instances in the same project/tenant. Bare metal hosts or OpenStack instances from another tenant cannot be joined to the cluster with the OpenStack cloud provider.
- All Kubernetes nodes must be on the same Neutron subnet.
- OpenStack public APIs (such as Keystone API) must be accessible from all Kubernetes nodes.

In addition to operational requirements, the OpenStack cloud provider introduces a significant security concern. As a result, a non-privileged user should be created in the project/tenant where the instances reside specifically for this purpose. The reason behind this is that every single Kubernetes node (both Master node and Node) must contain the entire credentials in cleartext in the /etc/kubernetes/cloud-config.conf file. These credentials are put into pillar as well, so this is also a security vector to be aware of.

Enable the OpenStack cloud provider

Before you deploy a new Kubernetes cluster on VMs on top of OpenStack, enable the OpenStack cloud provider by making corresponding changes in you deployment metadata model.

Caution!

Mirantis recommends that you enable the OpenStack cloud provider on new Kubernetes clusters only. Enabling the OpenStack cloud provider on existing Kubernetes clusters may impact your workloads. The Kubernetes nodes will be re-registered with FQDN-based names identical to the corresponding instances names on your OpenStack environment. This may impact your workloads pinned to particular nodes and requires a manual clean up of stalled nodes.

To enable the OpenStack cloud provider:

- 1. Verify that you have an existing OpenStack environment to be used to deploy a Kubernetes cluster on top of OpenStack. For the requirements details, see: Considerations when using the OpenStack cloud provider.
- 2. Prepare six VMs that will include the Salt Master node and corresponding network configuration to be used for deploying a new Kubernetes cluster. For details, see: Prerequisites.
- 3. Open your Git project repository with Reclass model on the cluster level.
- 4. In classes/cluster/<cluster_name>/kubernetes/init.yml, add the following parameters, replacing the credentials to reflect your OpenStack environment:

_param:

kubernetes_cloudprovider_enabled: True
kubernetes_cloudprovider_type: 'openstack'

kubernetes_openstack_provider_cloud_user: admin kubernetes_openstack_provider_cloud_password: secret kubernetes_openstack_provider_cloud_auth_url: <public_keystone_endpoint> kubernetes_openstack_provider_cloud_tenant_id: <tenant_id> kubernetes_openstack_provider_cloud_domain_id: default kubernetes_openstack_provider_cloud_region: RegionOne kubernetes_openstack_provider_lbaas_subnet_id: <subnet_id> kubernetes_openstack_provider_floating_net_id: <floating_net_id>

Note

The subnet_id parameter is the UUID of the subnet from which you can access internal addresses of the Kubernetes nodes, or external addresses if internal ones are not present on a cluster. Do not use the network ID.

- 5. Commit and push the changes to the project Git repository.
- 6. Proceed with further cluster configuration as required. OpenStack cloud provider will be automatically deployed with the Kubernetes cluster.

After you deploy the OpenStack cloud provider, proceed to Verify the OpenStack cloud provider after deployment.

Verify the OpenStack cloud provider after deployment

After you enable the OpenStack cloud provider as described in Enable the OpenStack cloud provider and deploy it together with your Kubernetes cluster, verify that it has been successfully deployed using the procedure below.

To verify the OpenStack cloud provider:

- 1. Log in to any Kubernetes Master node.
- 2. Create a claim1.yaml file with the following content:

```
kind: PersistentVolumeClaim
apiVersion: v1
metadata:
name: claim1
spec:
storageClassName: cinder
accessModes:
- ReadWriteOnce
resources:
requests:
storage: 1Gi
```

3. Run the following command:

kubectl apply -f claim1.yaml

4. Create a cinder-test-rc.yaml file with the following content:

```
apiVersion: v1
kind: ReplicationController
metadata:
 name: server
 labels:
  name: nginx
spec:
 replicas: 1
 template:
  metadata:
   labels:
    name: nginx
  spec:
   containers:
   - name: server
    image: nginx
    volumeMounts:
     - mountPath: /var/lib/www/html
      name: cinderpvc
   volumes:
```

 name: cinderpvc
 persistentVolumeClaim: claimName: claim1

5. Run the following command:

kubectl apply -f cinder-test-rc.yaml

6. Verify that the volume was created:

openstack volume list

- 7. Verify that Neutron LBaaS can create the LoadBalancer objects:
 - 1. Create an nginx-rs.yml file with the following content:

2. Run the following commands:

kubectl create -f nginx-rs.yml kubectl expose rs nginx --port 80 --type=LoadBalancer

8. Verify that the service has an external IP:

kubectl get services -owide

Example of system response:

 NAME
 CLUSTER-IP
 EXTERNAL-IP
 PORT(S)
 AGE
 SELECTOR

 kubernetes
 10.254.0.1
 <none>
 443/TCP
 40m
 <none>

 nginx
 10.254.18.214
 192.168.10.96,172.17.48.159
 80:31710/TCP
 1m
 app=nginx

9. Verify that LoadBalancer was created in OpenStack:

neutron Ibaas-loadbalancer-list

In the output, the vip_address should match the first external IP for the service created.

Seealso

Troubleshoot the OpenStack cloud provider

Troubleshoot the OpenStack cloud provider

The table in this section lists solutions for issues related to the OpenStack cloud provider operations after deployment.

Issue	Solution		
Cinder volume cannot be mounted	 Verify logs for the pod that failed and the kubelet logs on the Kubernetes Nodes. Identify and fix permission issues, if any. 		
Cinder volume is not created	1. Verify that your user has privileges to create Cinder volumes:		
	see: Create OpenStack client environment scripts.		
	2. Run the openstack volume create testsize 1.		
	Verify logs for openstack-cloud-controller-manager on each Kubernetes Master node.		
The kubelet agent does not register with apiserver	1. Verify that the instance name does not contain invalid characters. An instance name must be a RFC-953 compliant, which states that a DNS name must consist of characters drawn from the alphabet (A-Z), digits (0-9), minus sign (-), and period (.). It is best to destroy and recreate the instance because the configdrive metadata located in /dev/vdb cannot be updated automatically even after renaming an instance.		
	Verify that your cloud credentials are valid. The kubelet agent will not start if the credentials are wrong.		

Heat stack cannot be deleted because of LoadBalancer services	 Delete all service resources before deleting the Heat stack using the kubectl delete svcall command. If the stack was already deleted and is now in the DELETE_FAILED state, purge all LBaaS objects visible to your OpenStack user with the following commands: 	
	<pre>for pool in `neutron Ibaas-pool-list -c id -f value`; do while read member; do neutron Ibaas-member-delete \$member \$pool done < <(neutron Ibaas-member-list \$pool -c id -f value) neutron Ibaas-pool-delete \$pool done for listener in `neutron Ibaas listener list, c id, f value`; de </pre>	
	for listener in neutron Ibaas-listener-list -c id -f value ; do neutron Ibaas-listener-delete \$listener done for lb in `neutron Ibaas-loadbalancer-list -c id -f value`; do neutron Ibaas-loadbalancer-delete \$lb done	
	3. Delete the stack safely with the openstack stack delete STACKNAME command.	
LBaaS is stuck in Pending state	1. Verify the subnet ID used for deployment. The subnet should match the network attached to the first interface on the instances (such as net01). Use the openstack subnet list command to get a list of subnets.	
	2. Verify that the public net ID is correct. Use the neutron net-external-list command to find the public net.	
	3. Verify that Octavia is deployed and configured. The neutron Ibaas-loadbalancer-list command must return either 0 or some entries, but not an error. For the Octavia deployment details, see Configure load balancing with OpenStack Octavia.	

Seealso

OpenStack cloud provider overview

Seealso

MCP Operations Guide: Kubernetes operations

Deploy StackLight LMA with the DevOps Portal

Warning

The DevOps Portal has been deprecated in the Q4`18 MCP release tagged with the 2019.2.0 Build ID.

This section explains how to deploy StackLight LMA with the DevOps Portal (OSS) using Jenkins.

Before you proceed with the deployment, verify that your cluster level model contains configuration to deploy StackLight LMA as well as OSS. More specifically, check whether you enabled StackLight LMA and OSS as described in Services deployment parameters, and specified all the required parameters for these MCP components as described in StackLight LMA product parameters and OSS parameters.

Note

For production environments, CI/CD should be deployed on a per-customer basis.

For testing purposes, you can use the central Jenkins lab that is available for Mirantis employees only. To be able to configure and execute Jenkins pipelines using the lab, you need to log in to the Jenkins web UI with your Launchpad credentials.

To deploy StackLight LMA with the DevOps Portal:

1. In a web browser, open http://<ip_address>:8081 to access the Jenkins web UI.

Note

The IP address is defined in the classes/cluster/<cluster_name>/cicd/init.yml file of the Reclass model under the cicd_control_address parameter variable.

2. Log in to the Jenkins web UI as admin.

Note

To obtain the password for the admin user, run the salt "cid*" pillar.data _param:jenkins_admin_password command from the Salt Master node.

3. Find the Deploy - OpenStack job in the global view.

- 4. Select the Build with Parameters option from the drop-down menu of the Deploy OpenStack job.
- 5. For the STACK_INSTALL parameter, specify the stacklight and oss values.

Warning

If you enabled Stacklight LMA and OSS in the Reclass model, you should specify both stacklight and oss to deploy them together. Otherwise, the Runbooks Automation service (Rundeck) will not start due to Salt and Rundeck behavior.

Note

For the details regarding other parameters for this pipeline, see Deploy - OpenStack environment parameters.

- 6. Click Build.
- 7. Once the cluster is deployed, you can access the DevOps Portal at the IP address specified in the stacklight_monitor_address parameter on port 8800.
- 8. Customize the alerts as described in MCP Operations Guide: Alerts that require tuning.
- 9. Once StackLight LMA is deployed, customize the alerts as described in MCP Operations Guide: Alerts that require tuning.

Seealso

- Deploy an OpenStack environment
- View the deployment details

View credentials details used in Jenkins pipelines

MCP uses the Jenkins Credentials Plugin that enables users to store credentials in Jenkins globally. Each Jenkins pipeline can operate only the credential ID defined in the pipeline's parameters and does not share any security data.

To view the detailed information about all available credentials in the Jenkins UI:

1. Log in to your Jenkins master located at http://<jenkins_master_ip_address>:8081.

Note

The Jenkins master IP address is defined in the classes/cluster/<cluster_name>/cicd/init.yml file of the Reclass model under the cicd_control_address parameter variable.

2. Navigate to the Credentials page from the left navigation menu.

All credentials listed on the Credentials page are defined in the Reclass model. For example, on the system level in the ../../system/jenkins/client/credential/gerrit.yml file.

Examples of users definitions in the Reclass model:

• With the RSA key definition:

jenkins: client: credential: gerrit: username: \${_param:gerrit_admin_user} key: \${_param:gerrit_admin_private_key}

• With the open password:

jenkins: client: credential: salt: username: salt password: \${_param:salt_api_password}

View the deployment details

Once you have enforced a pipeline in CI/CD, you can monitor the progress of its execution on the job progress bar that appears on your screen. Moreover, Jenkins enables you to analyze the details of the deployments process.

To view the deployment details:

- 1. Log in to the Jenkins web UI.
- 2. Under Build History on the left, click the number of the build you are interested in.
- 3. Go to Console Output from the navigation menu to view the deployment progress.
- 4. When the deployment succeeds, verify the deployment result in Horizon.

Note

The IP address for Horizon is defined in the classes/cluster/<name>/openstack/init.yml file of the Reclass model under the openstack_proxy_address parameter variable.

To troubleshoot an OpenStack deployment:

- 1. Log in to the Jenkins web UI.
- 2. Under Build History on the left, click the number of the build you are interested in.
- 3. Verify Full log to determine the cause of the error.
- 4. Rerun the deployment with the failed component only. For example, if StackLight LMA fails, run the deployment with only StackLight selected for deployment. Use steps 6-10 of the Deploy an OpenStack environment instruction.

Deploy an MCP cluster manually

This section explains how to manually configure and install the software required for your MCP cluster. For an easier deployment process, use the automated DriveTrain deployment procedure described in Deploy an MCP cluster using DriveTrain.

Note

The modifications to the metadata deployment model described in this section provide only component-specific parameters and presuppose the networking-specific parameters related to each OpenStack component, since the networking model may differ depending on a per-customer basis.

Deploy an OpenStack environment manually

This section explains how to manually configure and install software required by your MCP OpenStack environment, such as support services, OpenStack services, and others.

Prepare VMs to install OpenStack

This section instructs you on how to prepare the virtual machines for the OpenStack services installation.

To prepare VMs for a manual installation of an OpenStack environment:

- 1. Log in to the Salt Master node.
- 2. Verify that the Salt Minion nodes are synchronized:

salt '*' saltutil.sync_all

3. Configure basic operating system settings on all nodes:

salt '*' state.sls salt.minion,linux,ntp,openssh

Enable TLS support

To assure the confidentiality and integrity of network traffic inside your OpenStack deployment, you should use cryptographic protective measures, such as the Transport Layer Security (TLS) protocol.

By default, only the traffic that is transmitted over public networks is encrypted. If you have specific security requirements, you may want to configure internal communications to connect through encrypted channels. This section explains how to enable the TLS support for your MCP cluster.

Note

The procedures included in this section apply to new MCP OpenStack deployments only, unless specified otherwise.

Encrypt internal API HTTP transport with TLS

This section explains how to encrypt the internal OpenStack API HTTP with TLS.

To encrypt the internal API HTTP transport with TLS:

- 1. Verify that the Keystone, Nova Placement, Cinder, Barbican, Gnocchi, Panko, and Manila API services, whose formulas support using Web Server Gateway Interface (WSGI) templates from Apache, are running under Apache by adding the following classes to your deployment model:
 - In openstack/control.yml:

classes:	
- system.apache.server.site.barbican - system.apache.server.site.cinder	
 system.apache.server.site.gnocchi system.apache.server.site.manila system.apache.server.site.poya-placement 	
- system.apache.server.site.panko	

• In openstack/telemetry.yml:

- 2. Add SSL configuration for each WSGI template by specifying the following parameters:
 - In openstack/control.yml:

```
parameters:
_param:
...
apache_proxy_ssl:
enabled: true
engine: salt
authority: "${_param:salt_minion_ca_authority}"
key_file: "/etc/ssl/private/internal_proxy.key"
cert_file: "/etc/ssl/certs/internal_proxy.crt"
chain_file: "/etc/ssl/certs/internal_proxy-with-chain.crt"
apache_cinder_ssl: ${_param:apache_proxy_ssl}
apache_barbican_ssl: ${_param:apache_proxy_ssl}
apache_manila_ssl: ${_param:apache_proxy_ssl}
apache_manila_ssl: ${_param:apache_proxy_ssl}
apache_nova_placement: ${_param:apache_proxy_ssl}
```

• In openstack/telemetry.yml:

```
parameters:
_param:
...
apache_gnocchi_api_address: ${_param:single_address}
apache_panko_api_address: ${_param:single_address}
apache_gnocchi_ssl: ${_param:nginx_proxy_ssl}
apache_panko_ssl: ${_param:nginx_proxy_ssl}
```

3. For services that are still running under Eventlet, configure TLS termination proxy. Such services include Nova, Neutron, Ironic, Glance, Heat, Aodh, and Designate.

Depending on your use case, configure proxy on top of either Apache or NGINX by defining the following classes and parameters:

- In openstack/control.yml:
 - To configure proxy on Apache:

```
classes:
- system.apache.server.proxy.openstack.designate
- system.apache.server.proxy.openstack.glance
- system.apache.server.proxy.openstack.heat
- system.apache.server.proxy.openstack.ironic
- system.apache.server.proxy.openstack.neutron
- system.apache.server.proxy.openstack.nova
parameters:
 _param:
  # Configure proxy to redirect request to locahost:
  apache proxy openstack api address: ${ param:cluster local host}
  apache proxy openstack designate host: 127.0.0.1
  apache proxy openstack glance host: 127.0.0.1
  apache proxy openstack heat host: 127.0.0.1
  apache proxy openstack ironic host: 127.0.0.1
  apache proxy openstack neutron host: 127.0.0.1
  apache proxy openstack nova host: 127.0.0.1
 . . .
 apache:
  server:
   site:
    apache proxy openstack api glance registry:
     enabled: true
     type: proxy
```

```
name: openstack_api_glance_registry
proxy:
host: ${_param:apache_proxy_openstack_glance_registry_host}
port: 9191
protocol: http
host:
name: ${_param:apache_proxy_openstack_api_host}
port: 9191
address: ${_param:apache_proxy_openstack_api_address}
ssl: ${_param:apache_proxy_ssl}
```

• To configure proxy on NGINX:

```
classes:
- system.nginx.server.single
- system.nginx.server.proxy.openstack api
- system.nginx.server.proxy.openstack.designate
- system.nginx.server.proxy.openstack.ironic
- system.nginx.server.proxy.openstack.placement
# Delete proxy sites that are running under Apache:
_param:
....
nainx:
server:
  site:
   nginx_proxy_openstack_api_keystone:
    enabled: false
   nginx proxy openstack api keystone private:
    enabled: false
# Configure proxy to redirect request to locahost
_param:
....
nginx proxy openstack api address: ${ param:cluster local address}
nginx_proxy_openstack_cinder_host: 127.0.0.1
nginx_proxy_openstack_designate_host: 127.0.0.1
nginx_proxy_openstack_glance_host: 127.0.0.1
nginx proxy openstack heat host: 127.0.0.1
nginx_proxy_openstack_ironic host: 127.0.0.1
nginx proxy openstack neutron host: 127.0.0.1
nginx proxy openstack nova host: 127.0.0.1
# Add nginx SSL settings:
```

_param:
nginx_proxy_ssl:
enabled: true
engine: salt
<pre>authority: "\${_param:salt_minion_ca_authority}"</pre>
key_file: "/etc/ssl/private/internal_proxy.key"
cert_file: "/etc/ssl/certs/internal_proxy.crt"
chain_file : "/etc/ssl/certs/internal_proxy-with-chain.crt"

• In openstack/telemetry.yml:

- 4. Edit the openstack/init.yml file:
 - 1. Add the following parameters to the cluster model:

parameters: _param:	
 cluster_public_protocol: https aodh_service_protocol: \${_param:cluster_internal_protocol} barbican_service_protocol: \${_param:cluster_internal_protocol} cinder_service_protocol: \${_param:cluster_internal_protocol} designate_service_protocol: \${_param:cluster_internal_protocol} glance_service_protocol: \${_param:cluster_internal_protocol} mocchi_service_protocol: \${_param:cluster_internal_protocol} heat_service_protocol: \${_param:cluster_internal_protocol} ironic_service_protocol: \${_param:cluster_internal_protocol} keystone_service_protocol: \${_param:cluster_internal_protocol} manila_service_protocol: \${_param:cluster_internal_protocol} neutron_service_protocol: \${_param:cluster_internal_protocol} nova_service_protocol: \${_param:cluster_internal_protocol} panko_service_protocol: \${_param:cluster_internal_protocol}	

2. Depending on your use case, define the following parameters for the OpenStack services to verify that the services running behind TLS proxy are binded to the localhost:

• In openstack/control.yml:

OpenStack service	Required configuration
Barbican	bind: address: 127.0.0.1 identity: protocol: https
Cinder	identity: protocol: https osapi: host: 127.0.0.1 glance: protocol: https
Designate	identity: protocol: https bind: api: address: 127.0.0.1
Glance	bind: address: 127.0.0.1 identity: protocol: https registry: protocol: https
Heat	bind: api: address: 127.0.0.1 api_cfn: address: 127.0.0.1 api_cloudwatch: address: 127.0.0.1 identity: protocol: https
Horizon	identity: encryption: ssl

Ironic	ironic: bind: api: address: 127.0.0.1
Neutron	bind: address: 127.0.0.1 identity: protocol: https
Nova	<pre>controller: bind: private_address: 127.0.0.1 identity: protocol: https network: protocol: https glance: protocol: https metadata: bind: address: \${_param:nova_service_host}</pre>
Panko	panko: server: bind: host: 127.0.0.1

• In openstack/telemetry.yml:

parameters: _param:		
aodh: server: bind: host: 127.0.0.1 identity: protocol: http		
gnocchi: server: identity: protocol: http		

panko: server: identity: protocol: https

5. For StackLight LMA, in stacklight/client.yml, enable Telegraf to correctly resolve the CA of the identity endpoint:

```
docker:

client:

stack:

monitoring:

service:

remote_agent:

volumes:

- /etc/ssl/certs/:/etc/ssl/certs/
```

6. For RADOS Gateway, specify the following pillar in ceph/rgw.yml:

```
ceph:
radosgw:
identity:
keystone_verify_ssl: True
host: ${_param:cluster_internal_protocol}://${_param:ceph_radosgw_keystone_host}
```

7. For the existing deployments, add the following pillar to openstack/control/init.yml to update Nova cells. Otherwise, nova-conductor will use a wrong port for AMQP connections.

```
nova:
controller:
update_cells: true
```

- 8. Select one of the following options:
 - If you are performing an initial deployment of your cluster, proceed with further configuration as required.
 - If you are making changes to an existing cluster:
 - 1. Log in to the Salt Master node.
 - 2. Refresh pillars:

salt '*' saltutil.refresh_pillar

3. Apply the Salt states depending on your use case. For example:

- salt -C 'l@haproxy' state.apply haproxy salt -C 'l@apache' state.apply apache
- salt 'ctl0*' state.apply keystone,nova,neutron,heat,glance,cinder,designate,manila,ironic salt 'mdb0*' state.apply aodh,ceilometer,panko,gnocchi

salt -C 'l@ceph' state.apply ceph salt -C "l@docker:client" state.sls docker.client

salt -C "lonova:controller" state.sls nova.controller

Enable TLS for RabbitMQ and MySQL backends

Using TLS protects the communications within your cloud environment from tampering and eavesdropping. This section explains how to configure the OpenStack databases backends to require TLS.

Caution!

TLS for MySQL is supported starting from the Pike OpenStack release.

Note

The procedures included in this section apply to new MCP OpenStack deployments only, unless specified otherwise.

To encrypt RabbitMQ and MySQL communications:

- 1. Add the following classes to the cluster model of the nodes where the server is located:
 - For the RabbitMQ server:

• For the MySQL server (Galera cluster):

```
classes:
### Enable tls, contains paths to certs/keys
- service.galera.ssl
### Definition of cert/key
- system.salt.minion.cert.mysql.server
```

2. Verify that each node trusts the CA certificates that come from the Salt Master node:

```
_param:
    salt_minion_ca_host: cfg01.${_param:cluster_domain}
salt:
    minion:
    trusted_ca_minions:
        - cfg01.${_param:cluster_domain}
```

- 3. Deploy RabbitMQ and MySQL as described in Install support services.
- 4. Apply the changes by executing the salt.minion state:

salt -I salt:minion:enabled state.apply salt.minion

Seealso

- Database transport security in the OpenStack Security Guide
- Messaging security in the OpenStack Security Guide

Enable TLS for client-server communications

This section explains how to encrypt the communication paths between the OpenStack services and the message queue service (RabbitMQ) as well as the MySQL database.

Note

The procedures included in this section apply to new MCP OpenStack deployments only, unless specified otherwise.

To enable TLS for client-server communications:

- 1. For each of the OpenStack services, enable the TLS protocol usage for messaging and database communications by changing the cluster model as shown in the examples below:
 - For a controller node:
 - The database server configuration example:

```
classes:
- system.salt.minion.cert.mysql.server
- service.galera.ssl
parameters:
 barbican:
  server:
   database:
    ssl:
      enabled: True
 heat:
  server:
   database:
    ssl:
      enabled: True
 designate:
  server:
   database:
    ssl:
      enabled: True
 glance:
  server:
   database:
    ssl:
      enabled: True
 neutron:
  server:
   database:
```

```
ssl:
    enabled: True
nova:
 controller:
  database:
   ssl:
    enabled: True
cinder:
 controller:
  database:
   ssl:
    enabled: True
 volume:
  database:
   ssl:
    enabled: True
keystone:
 server:
  database:
   ssl:
    enabled: True
```

• The messaging server configuration example:

```
classes:
- service.rabbitmq.server.ssl
- system.salt.minion.cert.rabbitmq_server
parameters:
 designate:
  server:
   message_queue:
     port: 5671
    ssl:
      enabled: True
 barbican:
  server:
   message_queue:
     port: 5671
     ssl:
      enabled: True
 heat:
  server:
```

message queue: port: 5671 ssl: enabled: True glance: server: message_queue: port: 5671 ssl: enabled: True neutron: server: message_queue: port: 5671 ssl: enabled: True nova: controller: message_queue: port: 5671 ssl: enabled: True cinder: controller: message_queue: port: 5671 ssl: enabled: True volume: message_queue: port: 5671 ssl: enabled: True keystone: server: message_queue: port: 5671 ssl: enabled: True

• For a compute node, the messaging server configuration example:
```
parameters:

neutron:

compute:

message_queue:

port: 5671

ssl:

enabled: True

nova:

compute:

message_queue:

port: 5671

ssl:

enabled: True
```

• For a gateway node, the messaging configuration example:

```
parameters:
neutron:
gateway:
message_queue:
port: 5671
ssl:
enabled: True
```

2. Refresh the pillar data to synchronize the model update at all nodes:

```
salt '*' saltutil.refresh_pillar
salt '*' saltutil.sync_all
```

3. Proceed to Install OpenStack services.

Enable libvirt control channel and live migration over TLS

This section explains how to enable TLS encryption for libvirt. By protecting libvirt with TLS, you prevent your cloud workloads from security compromise. The attacker without an appropriate TLS certificate will not be able to connect to libvirtd and affect its operation. Even if the user does not define custom certificates in their Reclass configuration, the certificates are created automatically.

Note

The procedures included in this section apply to new MCP OpenStack deployments only, unless specified otherwise.

To enable libvirt control channel and live migration over TLS:

- 1. Log in to the Salt Master node.
- 2. Select from the following options:
 - To use dynamically generated pillars from the Salt minion with the automatically generated certificates, add the following class in the classes/cluster/cluster_name/openstack/compute/init.yml of your Recalss model:

```
classes:
...
- system.nova.compute.libvirt.ssl
```

• To install the pre-created certificates, define them as follows in the pillar:

```
nova:
compute:
libvirt:
tls:
enabled: True
key: certificate_content
cert: certificate_content
client:
key: certificate_content
client:
cert: certificate_content
cert: certificate_content
```

3. Optional. In classes/cluster/cluster_name/openstack/compute/init.yml, modify the following default configuration for SSL ciphers as required:

Warning

The default SSL ciphers configuration below contains only the TLS v1.2 FIPS-approved cipher suites. Using weak or medium strengh encryption suites can potentially lead to security or compliance issues in your cluster. Therefore, Mirantis highly recommends keeping the default configuration for this parameter.

nova: complute: libvirt: tls: ... priority: "SECURE256:-VERS-ALL:+VERS-TLS1.2:-KX-ALL:+ECDHE-RSA:+ECDHE-ECDSA:\ -CIPHER-ALL:+AES-256-GCM:+AES-256-CBC:-MAC-ALL:+AEAD:+SHA384"

4. Apply the changes by running the nova state for all compute nodes:

salt 'cmp*' state.apply nova

Enable TLS encryption between the OpenStack compute nodes and VNC clients

The Virtual Network Computing (VNC) provides a remote console or remote desktop access to guest virtual machines through either the OpenStack dashboard or the command-line interface. The OpenStack Compute service users can access their instances using the VNC clients through the VNC proxy. MCP enables you to encrypt the communication between the VNC clients and OpenStack compute nodes with TLS.

Note

The procedures included in this section apply to new MCP OpenStack deployments only, unless specified otherwise.

To enable TLS encryption for VNC:

- 1. Open your Reclass model Git repository on the cluster level.
- 2. Enable the TLS encryption of communications between the OpenStack compute nodes and VNC proxy:

Note

The data encryption over TLS between the OpenStack compute nodes and VNC proxy is supported starting with the OpenStack Pike release.

1. In openstack/compute/init.yml, enable the TLS encryption on the OpenStack compute nodes:

```
    - system.nova.compute.libvirt.ssl.vnc
    parameters:

            _param:
            _nova vncproxy url: https://${ param:cluster public host}:6080
```

2. In openstack/control.yml, enable the TLS encryption on the VNC proxy:

3. In openstack/proxy.yml, define the HTTPS protocol for the nginx_proxy_novnc site:

```
nginx:
server:
site:
nginx_proxy_novnc:
proxy:
protocol: https
```

3. Enable the TLS encryption of communications between VNC proxy and VNC clients in openstack/control.yml:

Note

The data encryption over TLS between VNC proxy and VNC clients is supported starting with the OpenStack Queens release.

```
nova:
controller:
novncproxy:
tls:
enabled: True
```

4. ^{Available from 2019.2.4} Optional. Specify a required TLS version and allowed SSL ciphers to use by the Nova console proxy server:

```
nova:

controller:

novncproxy:

tls:

enabled: True

version: <tls version>

ciphers: <ciphers>
```

- The <tls_version> value is one of default, tlsv1_1, tlsv1_2, or tlsv1_3. Depending on your Python version, not all TLS versions may be available, in which case a graceful fallback to the newest possible version will be performed.
- The <ciphers> value is a coma-separated list of allowed SSL ciphers, depending on your system and OpenSSL version. To obtain the list of available ciphers, run openssl ciphers on an OpenStack controller node.
- 5. Apply the changes:

salt 'cmp*' state.apply nova salt 'ctl*' state.apply nova salt 'prx*' state.apply nginx Configure OpenStack APIs to use X.509 certificates for MySQL

MCP enables you to enhance the security of your OpenStack cloud by requiring X.509 certificates for authentication. Configuring OpenStack APIs to use X.509 certificates for communicating with the MySQL database provides greater identity assurance of OpenStack clients making the connection to the database and ensures that the communications are encrypted.

When configuring X.509 for your MCP cloud, you enable the TLS support for the communications between MySQL and the OpenStack services.

The OpenStack services that support X.509 certificates include: Aodh, Barbican, Cinder, Designate, Glance, Gnocchi, Heat, Ironic, Keystone, Manila Neutron, Nova, and Panko.

Note

The procedures included in this section apply to new MCP OpenStack deployments only, unless specified otherwise.

To enable the X.509 and SSL support:

- 1. Configure the X.509 support on the Galera side:
 - 1. Include the following class to cluster_name/openstack/database.yml of your deployment model:

system.galera.server.database.x509.<openstack_service_name>

2. Apply the changes by running the galera state:

Note

On an existing environment, the already existing database users and their privileges will not be replaced automatically. If you want to replace the existing users, you need to remove them manually before applying the galera state.

salt -C 'l@galera:master' state.sls galera

- 2. Configure the X.509 support on the service side:
 - 1. Configure all OpenStack APIs that support X.509 to use X.509 certificates by setting openstack_mysql_x509_enabled: True on the cluster level of your deployment model:

parameters: _param: openstack_mysql_x509_enabled: True

- 2. Define the certificates:
 - 1. Generate certificates automatically using Salt:

salt '*' state.sls salt.minion

2. Optional. Define pre-created certificates for particular services in pillars as described in the table below.

Note

The table illustrates how to define pre-created certificates through paths. Though, you can include a certificate content to a pillar instead. For example, for the Aodh, use the following structure:

aodh: server: database: x509: cacert: (certificate content) cert: (certificate content) key: (certificate content)

Open Stack servi ce	Define custom certificates in pillar	Apply the change
Aodh	<pre>aodh: server: database: x509: ca_cert: <path cert="" file="" to=""> cert_file: <path cert="" file="" to=""> key_file: <path cert="" file="" to=""></path></path></path></pre>	salt -C 'l@aodh:server' state.sls aodh

Barbic an	<pre>barbican: server: database: x509: ca_cert: <path cert="" file="" to=""> cert_file: <path cert="" file="" to=""> key_file: <path cert="" file="" to=""></path></path></path></pre>	salt -C 'l@barbican:server' state.sls barbican.server
Cinder	<pre>cinder: controller: database: x509: ca_cert: <path cert="" file="" to=""> cert_file: <path cert="" file="" to=""> key_file: <path cert="" file="" to=""> volume: database: x509: ca_cert: <path cert="" file="" to=""> cert_file: <path cert="" file="" to=""> key_file: <path cert="" file="" to=""></path></path></path></path></path></path></pre>	salt -C 'l@cinder:controller' state.sls cinder
Desig nate	<pre>designate: server: database: x509: ca_cert: <path cert="" file="" to=""> cert_file: <path cert="" file="" to=""> key_file: <path cert="" file="" to=""></path></path></path></pre>	salt -C 'l@designate:server' state.sls designate
Glanc e	glance: server: database: x509: ca_cert: <path cert="" file="" to=""> cert_file: <path cert="" file="" to=""> key_file: <path cert="" file="" to=""></path></path></path>	salt -C 'l@glance:server' state.sls glance.server

Gnocc hi	<pre>gnocchi: common: database: x509: ca_cert: <path cert="" file="" to=""> cert_file: <path cert="" file="" to=""> key_file: <path cert="" file="" to=""></path></path></path></pre>	salt -C 'l@gnocchi:server' state.sls gnocchi.server
Heat	<pre>heat: server: database: x509: ca_cert: <path cert="" file="" to=""> cert_file: <path cert="" file="" to=""> key_file: <path cert="" file="" to=""></path></path></path></pre>	salt -C 'l@heat:server' state.sls heat
Ironic	<pre>ironic: api: database: x509: ca_cert: <path cert="" file="" to=""> cert_file: <path cert="" file="" to=""> key_file: <path cert="" file="" to=""> conductor: database: x509: ca_cert: <path cert="" file="" to=""> cert_file: <path cert="" file="" to=""> key_file: <path cert="" file="" to=""></path></path></path></path></path></path></pre>	salt -C 'l@ironic:api' state.sls ironic.api salt -C 'l@ironic:conductor' state.sls ironic.conductor
Keyst one	keystone: server: database: x509: ca_cert: <path cert="" file="" to=""> cert_file: <path cert="" file="" to=""> key_file: <path cert="" file="" to=""></path></path></path>	salt -C 'l@keystone:server' state.sls keystone.server

Manila	<pre>manila: common: database: x509: ca_cert: <path cert="" file="" to=""> cert_file: <path cert="" file="" to=""> key_file: <path cert="" file="" to=""></path></path></path></pre>	salt -C 'l@manila:common' state.sls manila
Neutr on	<pre>neutron: server: database: x509: ca_cert: <path cert="" file="" to=""> cert_file: <path cert="" file="" to=""> key_file: <path cert="" file="" to=""></path></path></path></pre>	salt -C 'l@neutron:server' state.sls neutron.server
Nova	<pre>nova: controller: database: x509: ca_cert: <path cert="" file="" to=""> cert_file: <path cert="" file="" to=""> key_file: <path cert="" file="" to=""></path></path></path></pre>	salt -C 'l@nova:controller' state.sls nova.controller
Panko	<pre>panko: server: database: x509: ca_cert: <path cert="" file="" to=""> cert_file: <path cert="" file="" to=""> key_file: <path cert="" file="" to=""></path></path></path></pre>	salt -C 'l@panko:server' state.sls panko

3. To verify that a particular client is able to authorize with X.509, verify the output of the mysql --user-name=<component_name> on any controller node. For example:

mysql --user-name=nova --host=10.11.0.50 --password=<password> --silent \
 --ssl-ca=/etc/nova/ssl/mysql/ca-cert.pem \
 --ssl-cert=/etc/nova/ssl/mysql/client-cert.pem \
 --ssl-key=/etc/nova/ssl/mysql/client-key.pem

Seealso

MCP Operations Guide: Enable SSL certificates monitoring

Configure OpenStack APIs to use X.509 certificates for RabbitMQ

MCP enables you to enhance the security of your OpenStack environment by requiring X.509 certificates for authentication. Configuring the OpenStack services to use X.509 certificates for communicating with the RabbitMQ server provides greater identity assurance of OpenStack clients making the connection to message_queue and ensures that the communications are encrypted.

When configuring X.509 for your MCP cloud, you enable the TLS support for the communications between RabbitMQ and the OpenStack services.

The OpenStack services that support X.509 certificates for communicating with the RabbitMQ server include Aodh, Barbican, Cinder, Designate, Glance, Heat, Ironic, Keystone, Manila, Neutron, and Nova.

Note

The procedures included in this section apply to new MCP OpenStack deployments only, unless specified otherwise.

To enable the X.509 and SSL support for communications between the OpenStack services and RabbitMQ:

- 1. Configure the X.509 support on the RabbitMQ server side:
 - 1. Include the following class to <cluster_name>/openstack/message_queue.yml of your deployment model:

- system.rabbitmq.server.ssl

2. Refresh the pillars:

salt -C 'l@rabbitmq:server' saltutil.refresh_pillar

3. Verify the pillars:

Note

X.509 remains disabled until you enable it on the cluster level as described further in this procedure.

salt -C 'l@rabbitmq:server' pillar.get rabbitmq:server:x509

2. Configure the X.509 support on the service side:

1. Configure all OpenStack services that support X.509 to use X.509 certificates for RabbitMQ by setting the following parameters on the cluster level of your deployment model in <cluster_name>/openstack/init.yml:

```
parameters:
    _param:
    rabbitmq_ssl_enabled: True
    openstack_rabbitmq_x509_enabled: True
    openstack_rabbitmq_port: 5671
```

2. Refresh the pillars:

salt '*' saltutil.refresh_pillar

3. Verify that the pillars for the OpenStack services are updated. For example, for the Nova controller:

salt -C 'l@nova:controller' pillar.get nova:controller:message_queue:x509

Example of system response:

```
ctl03.example-cookiecutter-model.local:
 _____
 ca file:
   /etc/nova/ssl/rabbitmg/ca-cert.pem
 cert file:
   /etc/nova/ssl/rabbitmg/client-cert.pem
 enabled:
   True
 key file:
   /etc/nova/ssl/rabbitmg/client-key.pem
ctl02.example-cookiecutter-model.local:
 ca file:
   /etc/nova/ssl/rabbitmq/ca-cert.pem
 cert file:
   /etc/nova/ssl/rabbitmg/client-cert.pem
 enabled:
   True
 kev file:
   /etc/nova/ssl/rabbitmq/client-key.pem
ctl01.example-cookiecutter-model.local:
 _____
 ca file:
   /etc/nova/ssl/rabbitmg/ca-cert.pem
 cert file:
   /etc/nova/ssl/rabbitmg/client-cert.pem
```

enabled: True key_file: /etc/nova/ssl/rabbitmg/client-key.pem

- 3. Generate certificates automatically using Salt:
 - 1. For the OpenStack services:

salt '*' state.sls salt.minion

2. For the RabbitMQ server:

salt -C 'l@rabbitmq:server' state.sls salt.minion.cert

4. Verify that the RabbitmMQ cluster is healthy:

salt -C 'l@rabbitmq:server' cmd.run 'rabbitmqctl cluster_status'

5. Apply the changes on the server side:

salt -C 'l@rabbitmq:server' state.sls rabbitmq

- 6. Apply the changes for the OpenStack services by running the appropriate service states listed in the Apply the change column of the Definition of custom X.509 certificates for RabbitMQ table in the next step.
- 7. Optional. Define pre-created certificates for particular services in pillars as described in the table below.

Note

The table illustrates how to define pre-created certificates through paths. Though, you can include a certificate content to a pillar instead. For example, for the Aodh, use the following structure:

aodh:
 server:
 message_queue:
 x509:
 cacert: <certificate_content>
 cert: <certificate_content>
 key: <certificate_content>

Definition of custom X.509 certificates for RabbitMQ

OpenS tack s ervice	Define custom certificates in pillar	Apply the change
Aodh	<pre>aodh: server: message_queue: x509: ca_cert: <path cert="" file="" to=""> cert_file: <path cert="" file="" to=""> key_file: <path cert="" file="" to=""></path></path></path></pre>	salt -C 'l@aodh:server' state.sls aodh
Barbica n	<pre>barbican: server: message_queue: x509: ca_cert: <path cert="" file="" to=""> cert_file: <path cert="" file="" to=""> key_file: <path cert="" file="" to=""></path></path></path></pre>	salt -C 'l@barbican:server' state.sls barbican.server
Cinder	<pre>cinder: controller: message_queue: x509: ca_cert: <path cert="" file="" to=""> cert_file: <path cert="" file="" to=""> key_file: <path cert="" file="" to=""> volume: message_queue: x509: ca_cert: <path cert="" file="" to=""> cert_file: <path cert="" file="" to=""> key_file: <path cert="" file="" to=""></path></path></path></path></path></path></pre>	salt -C 'l@cinder:controller or l@cinder:volume' state.sls cinder
Design ate	<pre>designate: server: message_queue: x509: ca_cert: <path cert="" file="" to=""> cert_file: <path cert="" file="" to=""> key_file: <path cert="" file="" to=""></path></path></path></pre>	salt -C 'l@designate:server' state.sls designate

Glance	<pre>glance: server: message_queue: x509: ca_cert: <path cert="" file="" to=""> cert_file: <path cert="" file="" to=""> key_file: <path cert="" file="" to=""></path></path></path></pre>	salt -C 'l@glance:server' state.sls glance.server
Heat	<pre>heat: server: message_queue: x509: ca_cert: <path cert="" file="" to=""> cert_file: <path cert="" file="" to=""> key_file: <path cert="" file="" to=""></path></path></path></pre>	salt -C 'l@heat:server' state.sls heat
Ironic	<pre>ironic: api: message_queue: x509: ca_cert: <path cert="" file="" to=""> cert_file: <path cert="" file="" to=""> key_file: <path cert="" file="" to=""> conductor: message_queue: x509: ca_cert: <path cert="" file="" to=""> cert_file: <path cert="" file="" to=""> key_file: <path cert="" file="" to=""> key_file: <path cert="" file="" to=""></path></path></path></path></path></path></path></pre>	salt -C 'l@ironic:api' state.sls ironic.api salt -C 'l@ironic:conductor' state.sls ironic.conductor
Keysto ne	keystone: server: message_queue: x509: ca_cert: <path cert="" file="" to=""> cert_file: <path cert="" file="" to=""> key_file: <path cert="" file="" to=""></path></path></path>	salt -C 'l@keystone:server' state.sls keystone.server

Manila	<pre>manila: common: message_queue: x509: ca_cert: <path cert="" file="" to=""> cert_file: <path cert="" file="" to=""> key_file: <path cert="" file<="" pre="" to=""></path></path></path></pre>	salt -C 'l@manila:common' state.sls manila
Neutro n	<pre>neutron: server: message_queue: x509: ca_cert: <path cert="" file="" to=""> cert_file: <path cert="" file="" to=""> key_file: <path cert="" file="" to=""> neutron: gateway: message_queue: x509: ca_cert: <path cert="" file="" to=""> cert_file: <path cert="" file="" to=""> key_file: <path cert="" file="" to=""></path></path></path></path></path></path></pre>	salt -C 'l@neutron:server or l@neutron:gateway or l@neutron.compute' state.sis neutron
Nova	<pre>nova: controller: message_queue: x509: ca_cert: <path cert="" file="" to=""> cert_file: <path cert="" file="" to=""> key_file: <path cert="" file="" to=""> nova: compute: message_queue: x509: ca_cert: <path cert="" file="" to=""> cert_file: <path cert="" file="" to=""> key_file: <path cert="" file="" to=""></path></path></path></path></path></path></pre>	salt -C 'l@nova:controller or l@nova:compute' state.sls nova

8. To verify that a particular client can authorize to RabbitMQ with an X.509 certificate, verify the output of the rabbitmqctl list_connections command on any RabbitMQ node. For example:

salt msg01* cmd.run 'rabbitmqctl list_connections peer_host peer_port peer_cert_subject ssl'

Seealso

MCP Operations Guide: Enable SSL certificates monitoring

Install support services

Your installation should include a number of support services such as RabbitMQ for messaging; HAProxy for load balancing, proxying, and HA; GlusterFS for storage; and others. This section provides the procedures to install the services and verify they are up and running.

Warning

The HAProxy state should not be deployed prior to Galera. Otherwise, the Galera deployment will fail because of the ports/IP are not available due to HAProxy is already listening on them attempting to bind to 0.0.0.

Therefore, verify that your deployment workflow is correct:

- 1. Keepalived
- 2. Galera
- 3. HAProxy

Deploy Keepalived

Keepalived is a framework that provides high availability and load balancing to Linux systems. Keepalived provides a virtual IP address that network clients use as a main entry point to access the CI/CD services distributed between nodes. Therefore, in MCP, Keepalived is used in HA (multiple-node warm-standby) configuration to keep track of services availability and manage failovers.

Warning

The HAProxy state should not be deployed prior to Galera. Otherwise, the Galera deployment will fail because of the ports/IP are not available due to HAProxy is already listening on them attempting to bind to 0.0.0.

Therefore, verify that your deployment workflow is correct:

- 1. Keepalived
- 2. Galera
- 3. HAProxy

To deploy Keepalived:

salt -C 'l@keepalived:cluster' state.sls keepalived -b 1

To verify the VIP address:

1. Determine the VIP address for the current environment:

salt -C 'l@keepalived:cluster' pillar.get keepalived:cluster:instance:VIP:address

Example of system output:

ctl03.mk22-lab-basic.local: 172.16.10.254 ctl02.mk22-lab-basic.local: 172.16.10.254 ctl01.mk22-lab-basic.local: 172.16.10.254

Note

You can also find the Keepalived VIP address in the following files of the Reclass model:

- /usr/share/salt-formulas/reclass/service/keepalived/cluster/single.yml, parameter keepalived.cluster.instance.VIP.address
- /srv/salt/reclass/classes/cluster/<ENV_NAME>/openstack/control.yml, parameter cluster_vip_address
- 2. Verify if the obtained VIP address is assigned to any network interface on one of the controller nodes:

salt -C 'l@keepalived:cluster' cmd.run "ip a | grep <ENV_VIP_ADDRESS>"

Note

Remember that multiple clusters are defined. Therefore, verify that all of them are up and running.

Deploy NTP

The Network Time Protocol (NTP) is used to properly synchronize services among your OpenStack nodes.

To deploy NTP:

salt '*' state.sls ntp

Seealso

Enable NTP authentication

Deploy GlusterFS

GlusterFS is a highly-scalable distributed network file system that enables you to create a reliable and redundant data storage. GlusterFS keeps all important data for Database, Artifactory, and Gerrit in shared storage on separate volumes that makes MCP CI infrastructure fully tolerant to failovers.

To deploy GlusterFS:

salt -C 'l@glusterfs:server' state.sls glusterfs.server.service salt -C 'l@glusterfs:server' state.sls glusterfs.server.setup -b 1

To verify GlusterFS:

salt -C 'l@glusterfs:server' cmd.run "gluster peer status; gluster volume status" -b 1

Deploy RabbitMQ

RabbitMQ is an intermediary for messaging. It provides a platform to send and receive messages for applications and a safe place for messages to live until they are received. All OpenStack services depend on RabbitMQ message queues to communicate and distribute the workload across workers.

To deploy RabbitMQ:

- 1. Log in to the Salt Master node.
- 2. Apply the rabbitmq state:

salt -C 'l@rabbitmq:server' state.sls rabbitmq

3. Verify the RabbitMQ status:

salt -C 'l@rabbitmq:server' cmd.run "rabbitmqctl cluster_status"

Deploy Galera (MySQL)

Galera cluster is a synchronous multi-master database cluster based on the MySQL storage engine. Galera is an HA service that provides scalability and high system uptime.

Warning

The HAProxy state should not be deployed prior to Galera. Otherwise, the Galera deployment will fail because of the ports/IP are not available due to HAProxy is already listening on them attempting to bind to 0.0.0.

Therefore, verify that your deployment workflow is correct:

1. Keepalived

- 2. Galera
- 3. HAProxy

Note

For details on the Galera service configurations, see Configure Galera parameters.

To deploy Galera:

- 1. Log in to the Salt Master node.
- 2. Apply the galera state:

salt -C 'l@galera:master' state.sls galera salt -C 'l@galera:slave' state.sls galera -b 1

3. Verify that Galera is up and running:

salt -C 'l@galera:master' mysql.status | grep -A1 wsrep_cluster_size salt -C 'l@galera:slave' mysql.status | grep -A1 wsrep_cluster_size

Deploy HAProxy

HAProxy is a software that provides load balancing for network connections while Keepalived is used for configuring the IP address of the VIP.

Warning

The HAProxy state should not be deployed prior to Galera. Otherwise, the Galera deployment will fail because of the ports/IP are not available due to HAProxy is already listening on them attempting to bind to 0.0.0.

Therefore, verify that your deployment workflow is correct:

1. Keepalived

- 2. Galera
- 3. HAProxy

Note

For details on HAProxy configurations, see Configure HAProxy parameters.

To deploy HAProxy:

salt -C 'l@haproxy:proxy' state.sls haproxy salt -C 'l@haproxy:proxy' service.status haproxy salt -I 'haproxy:proxy' service.restart rsyslog

Deploy Memcached

Memcached is used for caching data for different OpenStack services such as Keystone. The Memcached service is running on the controller nodes for the control plane services and on proxy nodes for Horizon.

To deploy Memcached:

salt -C 'l@memcached:server' state.sls memcached

Seealso

MCP Operations guide: Disable the Memcached listener on the UDP port

Deploy a DNS backend for Designate

Berkely Internet Name Domain (BIND9) and PowerDNS are the two underlying Domain Name system (DNS) servers that Designate supports out of the box. You can use either new or existing DNS server as a backend for Designate.

Deploy BIND9 for Designate

Berkely Internet Name Domain (BIND9) server can be used by Designate as its underlying backend. This section describes how to configure an existing or deploy a new BIND9 server for Designate.

Configure an existing BIND9 server for Designate

If you already have a running BIND9 server, you can configure and use it for the Designate deployment.

The example configuration below has three predeployed BIND9 servers.

To configure an existing BIND9 server for Designate:

- 1. Open your BIND9 server UI.
- 2. Verify that the BIND9 configuration files contain rdnc.key for Designate.

The following text is an example of /etc/bind/named.conf.local on the managed BIND9 server with the IPs allowed for Designate and rdnc.key:

```
key "designate" {
    algorithm hmac-sha512;
    secret "4pc+X4PDqb2q+5o72dlSm72LM1Ds9X2EYZjqg+nmsS7F/C8H+z0fLLBunoitw==";
};
controls {
    inet 10.0.0.3 port 953
    allow {
        172.16.10.101;
        172.16.10.102;
        172.16.10.103;
    }
    keys {
        designate;
    };
};
```

- 3. Open classes/cluster/cluster_name/openstack in your Git project repository.
- 4. In init.yml, add the following parameters:

```
bind9 node01 address: 10.0.0.1
bind9 node02 address: 10.0.0.2
bind9 node03 address: 10.0.0.3
mysql designate password: password
keystone designate password: password
designate service host: ${ param:openstack control address}
designate bind9 rndc algorithm: hmac-sha512
designate bind9 rndc key: >
 4pc+X4PDqb2q+5o72dISm72LM1Ds9X2EYZjqg+nmsS7F/C8H+z0fLLBunoitw==
designate domain id: 5186883b-91fb-4891-bd49-e6769234a8fc
designate pool ns records:
 - hostname: 'ns1.example.org.'
  priority: 10
designate pool nameservers:
 - host: ${ param:bind9 node01 address}
  port: 53
```

```
- host: ${ param:bind9 node02 address}
  port: 53
 - host: ${ param:bind9 node03 address}
  port: 53
designate pool target type: bind9
designate pool target masters:
 - host: ${ param:openstack control node01 address}
  port: 5354
 - host: ${ param:openstack control node02 address}
  port: 5354
 - host: ${ param:openstack control node03 address}
  port: 5354
designate pool target options:
 host: ${ param:bind9 node01 address}
 port: 53
 rndc_host: ${_param:bind9_node01_address}
 rndc port: 953
 rndc key file: /etc/designate/rndc.key
designate_version: ${_param:openstack_version}
```

5. In control.yml, modify the parameters section. Add targets according to the number of BIND9 severs that will be managed, three in our case.

Example:

```
designate:
  server:
   backend:
    bind9:
      rndc_key: ${ param:designate bind9 rndc key}
     rndc algorithm: ${ param:designate bind9 rndc algorithm}
   pools:
    default:
     description: 'test pool'
     targets:
       default:
        description: 'test target1'
       default1:
        type: ${ param:designate pool target type}
        description: 'test target2'
        masters: ${ param:designate pool target masters}
        options:
         host: ${ param:bind9 node02 address}
         port: 53
         rndc_host: ${ param:bind9 node02 address}
         rndc port: 953
         rndc key file: /etc/designate/rndc.key
       default2:
```

```
type: ${_param:designate_pool_target_type}
description: 'test target3'
masters: ${_param:designate_pool_target_masters}
options:
host: ${_param:bind9_node03_address}
port: 53
rndc_host: ${_param:bind9_node03_address}
rndc_port: 953
rndc_key_file: /etc/designate/rndc.key
```

- 6. Add your changes to a new commit.
- 7. Commit and push the changes.

Once done, proceed to deploy Designate as described in Deploy Designate.

Prepare a deployment model for a new BIND9 server

Before you deploy a BIND9 server as a backend for Designate, prepare your cluster deployment model as described below.

The example provided in this section describes the configuration of the deployment model with two BIND9 servers deployed on separate VMs of the infrastructure nodes.

To prepare a deployment model for a new BIND9 server:

- 1. Open the classes/cluster/cluster_name/openstack directory in your Git project repository.
- 2. Create a dns.yml file with the following parameters:

```
classes:
- system.linux.system.repo.mcp.extra
- system.linux.system.repo.mcp.apt mirantis.ubuntu
- system.linux.system.repo.mcp.apt mirantis.saltstack
- system.bind.server.single
- cluster.cluster name.infra
parameters:
linux:
  network:
   interface:
    ens3: ${ param:linux single interface}
 bind:
  server:
   key:
    designate:
     secret: "${ param:designate bind9 rndc key}"
      algorithm: "${_param:designate_bind9_rndc_algorithm}"
   allow new zones: true
   query: true
   control:
    mgmt:
     enabled: true
      bind:
       address: ${_param:single_address}
       port: 953
      allow:
       - ${ param:openstack control node01 address}
       - ${_param:openstack control node02 address}
       - ${ param:openstack control node03 address}
       - ${ param:single address}
       - 127.0.0.1
      kevs:
       - designate
  client:
   enabled: true
   option:
    default:
```

server: 127.0.0.1
port: 953
key: designate
key:
designate:
secret: "\${_param:designate_bind9_rndc_key}"
algorithm: "\${ param:designate bind9 rndc algorithm}"

Note

In the parameters above, substitute cluster_name with the appropriate value.

3. In control.yml, modify the parameters section as follows. Add targets according to the number of the BIND9 servers that will be managed.

```
designate:
 server:
  backend:
   bind9:
    rndc key: ${ param:designate bind9 rndc key}
    rndc_algorithm: ${ param:designate bind9 rndc algorithm}
  pools:
   default:
    description: 'test pool'
    targets:
     default:
       description: 'test target1'
     default1:
       type: ${ param:designate pool target type}
       description: 'test target2'
       masters: ${ param:designate pool target masters}
       options:
        host: ${_param:openstack_dns_node02_address}
        port: 53
        rndc_host: ${ param:openstack dns node02 address}
        rndc port: 953
        rndc_key_file: /etc/designate/rndc.key
```

Note

In the example above, the first target that contains default parameters is defined in openstack/init.yml. The second target is defined explicitly. You can add more targets in this section as required.

4. In init.yml, modify the parameters section.

Example:

openstack dns node01 hostname: dns01 openstack dns node02 hostname: dns02 openstack dns node01 deploy address: 10.0.0.8 openstack dns node02 deploy address: 10.0.0.9 openstack dns node01 address: 10.0.0.1 openstack dns node02 address: 10.0.0.2 mysql_designate_password: password keystone designate password: password designate_service_host: \${ param:openstack control address} designate bind9 rndc key: > 4pc+X4PDqb2q+5o72dISm72LM1Ds9X2EYZjqg+nmsS7F/C8H+z0fLLBunoitw== designate bind9 rndc algorithm: hmac-sha512 designate domain id: 5186883b-91fb-4891-bd49-e6769234a8fc designate pool ns records: - hostname: 'ns1.example.org.' priority: 10 designate_pool_nameservers: - **host**: \${ param:openstack dns node01 address} **port**: 53 - **host**: \${ param:openstack dns node02 address} **port**: 53 designate_pool_target_type: bind9 designate pool target masters: - **host**: \${ param:openstack control node01 address} **port**: 5354 - **host**: \${ param:openstack control node02 address} **port**: 5354 - **host**: \${ param:openstack control node03 address} **port**: 5354 designate pool target options: host: \${ param:openstack dns node01 address} **port**: 53 rndc_host: \${_param:openstack_dns node01 address} rndc port: 953 **rndc key file**: /etc/designate/rndc.key **designate version**: \${ param:openstack version}
```
linux:
network:
host:
dns01:
   address: ${_param:openstack_dns_node01_address}
   names:
    - ${_param:openstack_dns_node01_hostname}
    - ${_param:openstack_dns_node01_hostname}.${_param:cluster_domain}
   dns02:
    address: ${_param:openstack_dns_node02_address}
   names:
    - ${_param:openstack_dns_node02_hostname}
    - ${_param:openstack_dns_node02_hostname}.${_param:cluster_domain}
```

5. In classes/cluster/cluster_name/infra/kvm.yml, add the following class:

```
classes:
- system.salt.control.cluster.openstack_dns_cluster
```

6. In classes/cluster/cluster_name/infra/config.yml, modify the classes and parameters sections.

Example:

• In the classes section:

```
classes:
- system.reclass.storage.system.openstack_dns_cluster
```

• In the parameters section, add the DNS VMs.

```
reclass:
storage:
node:
openstack_dns_node01:
params:
linux_system_codename: xenial
deploy_address: ${_param:openstack_database_node03_deploy_address}
openstack_dns_node01:
params:
linux_system_codename: xenial
deploy_address: ${_param:openstack_dns_node01_deploy_address}
openstack_dns_node02:
params:
linux_system_codename: xenial
deploy_address: ${_param:openstack_dns_node02_deploy_address}
```

openstack_message_queue_node01: params: linux_system_codename: xenial

7. Commit and push the changes.

Once done, proceed to deploy the BIND9 server service as described in Deploy a new BIND9 server for Designate.

Deploy a new BIND9 server for Designate

After you configure the Reclass model for a BIND9 server as the backend for Designate, proceed to deploying the BIND9 server service as described below.

To deploy a BIND9 server service:

- 1. Log in to the Salt Master node.
- 2. Configure basic operating system settings on the DNS nodes:

salt -C 'l@bind:server' state.sls linux,ntp,openssh

3. Apply the following state:

salt -C 'l@bind:server' state.sls bind

Once done, proceed to deploy Designate as described in Deploy Designate.

Deploy PowerDNS for Designate

PowerDNS server can be used by Designate as its underlying backend. This section describes how to configure an existing or deploy a new PowerDNS server for Designate.

The default PowerDNS configuration for Designate uses the Designate worker role. If you need live synchronization of DNS zones between Designate and PowerDNS servers, you can configure Designate with the pool_manager role. The Designate Pool Manager keeps records consistent across the Designate database and the PowerDNS servers. For example, if a record was removed from the PowerDNS server due to a hard disk failure, this record will be automatically restored from the Designate database.

Configure an existing PowerDNS server for Designate

If you already have a running PowerDNS server, you can configure and use it for the Designate deployment.

The example configuration below has three predeployed PowerDNS servers.

To configure an existing PowerDNS server for Designate:

- 1. Open your PowerDNS server UI.
- 2. In etc/powerdns/pdns.conf, modify the following parameters:
 - allow-axfr-ips must list the IPs of the Designate nodes, which will be located on the OpenStack API nodes
 - api-key must coincide with the designate_pdns_api_key parameter for Designate in the Reclass model
 - webserver must have the value yes
 - webserver-port must coincide with the powerdns_webserver_port parameter for Designate in the Reclass model
 - api must have the value yes to enable management through API
 - $\mbox{ \ \ }$ disable-axfr must have the value no to enable the axfr zone updates from the Designate nodes

Example:

webserver-password=gJ6n3gVaYP8eS webserver-port=8081

- 3. Open the classes/cluster/cluster_name/openstack directory in your Git project repository.
- 4. In init.yml, add the following parameters:

```
powerdns node01 address: 10.0.0.1
powerdns node02 address: 10.0.0.2
powerdns node03 address: 10.0.0.3
powerdns webserver password: gl6n3gVaYP8eS
powerdns webserver port: 8081
mysgl designate password: password
keystone designate password: password
designate service host: ${ param:openstack control address}
designate domain id: 5186883b-91fb-4891-bd49-e6769234a8fc
designate_pdns_api_key: VxK9cMIFL5Ae
designate_pdns_api_endpoint: >
 "http://${ param:powerdns node01 address}:${ param:powerdns webserver port}"
designate pool ns records:
 - hostname: 'ns1.example.org.'
  priority: 10
designate_pool_nameservers:
 - host: ${ param:powerdns node01 address}
  port: 53
 - host: ${ param:powerdns node02 address}
  port: 53
 - host: ${ param:powerdns node03 address}
  port: 53
designate_pool_target_type: pdns4
designate pool target masters:
 - host: ${ param:openstack control node01 address}
  port: 5354
 - host: ${ param:openstack control node02 address}
  port: 5354
 - host: ${ param:openstack control node03 address}
  port: 5354
designate pool target options:
 host: ${ param:powerdns node01 address}
 port: 53
 api_token: ${ param:designate pdns api key}
 api endpoint: ${ param:designate pdns api endpoint}
designate_version: ${ param:openstack version}
```

5. In control.yml, modify the parameters section. Add targets according to the number of PowerDNS severs that will be managed, three in our case.

Example:

```
designate:
  server:
   backend:
    pdns4:
     api_token: ${_param:designate_pdns_api_key}
     api endpoint: ${ param:designate pdns api endpoint}
   pools:
    default:
     description: 'test pool'
     targets:
       default:
        description: 'test target1'
       default1:
        type: ${ param:designate pool target type}
        description: 'test target2'
        masters: ${_param:designate_pool_target_masters}
        options:
         host: ${ param:powerdns node02 address}
         port: 53
         api endpoint: >
          "http://${_param:${_param:powerdns_node02_address}}:
          ${ param:powerdns webserver port}"
         api token: ${ param:designate pdns api key}
       default2:
        type: ${_param:designate_pool_target_type}
        description: 'test target3'
        masters: ${_param:designate_pool_target_masters}
        options:
         host: ${ param:powerdns node03 address}
         port: 53
         api endpoint: >
          "http://${_param:powerdns node03 address}:
          ${ param:powerdns webserver port}"
         api token: ${ param:designate pdns api key}
```

Once done, proceed to deploy Designate as described in Deploy Designate.

Prepare a deployment model for a new PowerDNS server with the worker role

Before you deploy a PowerDNS server as a backend for Designate, prepare your deployment model with the default Designate worker role as described below.

If you need live synchronization of DNS zones between Designate and PowerDNS servers, configure Designate with the pool_manager role as described in Prepare a deployment model for a new PowerDNS server with the pool_manager role.

The examples provided in this section describe the configuration of the deployment model with two PowerDNS servers deployed on separate VMs of the infrastructure nodes.

To prepare a deployment model for a new PowerDNS server:

- 1. Open the classes/cluster/cluster_name/openstack directory of your Git project repository.
- 2. Create a dns.yml file with the following parameters:

```
classes:
- system.powerdns.server.single
- cluster.cluster name.infra
parameters:
 linux:
  network:
   interface:
    ens3: ${ param:linux single interface}
  host:
   dns01:
    address: ${ param:openstack dns node01 address}
    names:
    - dns01
    - dns01.${ param:cluster domain}
   dns02:
    address: ${_param:openstack_dns_node02_address}
    names:
    - dns02
    - dns02.${ param:cluster domain}
 powerdns:
  server:
   enabled: true
   bind:
    address: ${ param:single address}
    port: 53
   backend:
    engine: sqlite
    dbname: pdns.sqlite3
    dbpath: /var/lib/powerdns
   api:
    enabled: true
    key: ${_param:designate_pdns_api_key}
   webserver:
```

enabled: true address: \${_param:single_address} port: \${_param:powerdns_webserver_port} password: \${_param:powerdns_webserver_password} axfr_ips: - \${_param:openstack_control_node01_address} - \${_param:openstack_control_node02_address} - \${_param:openstack_control_node03_address} - \${_param:openstack_control_node03_address} - 127.0.0.1

Note

If you want to use the MySQL backend instead of the default SQLite one, modify the backend section parameters accordingly and configure your metadata model as described in Enable the MySQL backend for PowerDNS.

3. In init.yml, define the following parameters:

Example:

```
openstack dns node01 address: 10.0.0.1
openstack dns node02 address: 10.0.0.2
powerdns webserver password: gl6n3gVaYP8eS
powerdns_webserver_port: 8081
mysgl designate password: password
keystone designate password: password
designate service host: ${ param:openstack control address}
designate domain id: 5186883b-91fb-4891-bd49-e6769234a8fc
designate_pdns_api_key: VxK9cMIFL5Ae
designate pdns api endpoint: >
 "http://${ param:openstack dns node01 address}:${ param:powerdns webserver port}"
designate_pool_ns_records:
 - hostname: 'ns1.example.org.'
  priority: 10
designate pool nameservers:
 - host: ${ param:openstack dns node01 address}
  port: 53
 - host: ${_param:openstack_dns_node02_address}
  port: 53
designate pool target type: pdns4
designate_pool_target_masters:
 - host: ${_param:openstack_control node01 address}
  port: 5354
 - host: ${ param:openstack control node02 address}
  port: 5354
```

```
- host: ${_param:openstack_control_node03_address}
    port: 5354
designate_pool_target_options:
    host: ${_param:openstack_dns_node01_address}
    port: 53
    api_token: ${_param:designate_pdns_api_key}
    api_endpoint: ${_param:designate_pdns_api_endpoint}
designate_version: ${_param:openstack_version}
designate_worker_enabled: true
```

4. In control.yml, define the following parameters in the parameters section:

Example:

```
designate:
 worker:
  enabled: ${ param:designate worker enabled}
 server:
  backend:
   pdns4:
    api_token: ${ param:designate pdns api key}
    api endpoint: ${ param:designate pdns api endpoint}
  pools:
   default:
    description: 'test pool'
    targets:
     default:
       description: 'test target1'
     default1:
       type: ${ param:designate pool target type}
       description: 'test target2'
       masters: ${ param:designate pool target masters}
       options:
        host: ${ param:openstack dns node02 address}
        port: 53
        api endpoint: >
         "http://${ param:openstack dns node02 address}:
         ${ param:powerdns webserver port}"
        api_token: ${ param:designate pdns api key}
```

- 5. In classes/cluster/cluster_name/infra/kvm.yml, modify the classes and parameters sections. Example:
 - In the classes section:

classes:

- system.salt.control.cluster.openstack_dns_cluster

• In the parameters section, add the DNS parameters for VMs with the required location of DNS VMs on kvm nodes and the planned resource usage for them.

```
salt:
control:
openstack.dns:
cpu: 2
ram: 2048
disk_profile: small
net_profile: default
cluster:
internal:
node:
dns01:
provider: kvm01.${_param:cluster_domain}
dns02:
provider: kvm02.${_param:cluster_domain}
```

6. In classes/cluster/cluster_name/infra/config.yml, modify the classes and parameters sections.

Example:

• In the classes section:

```
classes:
- system.reclass.storage.system.openstack_dns_cluster
```

• In the parameters section, add the DNS VMs. For example:

```
reclass:

storage:

node:

openstack_dns_node01:

params:

linux_system_codename: xenial

openstack_dns_node02:

params:

linux_system_codename: xenial
```

7. Commit and push the changes.

Once done, proceed to deploy the PowerDNS server service as described in Deploy a new PowerDNS server for Designate.

Prepare a deployment model for a new PowerDNS server with the pool_manager role

If you need live synchronization of DNS zones between Designate and PowerDNS servers, you can configure Designate with the pool_manager role as described below. The Designate Pool Manager keeps records consistent across the Designate database and the PowerDNS servers. For example, if a record was removed from the PowerDNS server due to a hard disk failure, this record will be automatically restored from the Designate database.

To configure a PowerDNS server with the default Designate worker role, see Prepare a deployment model for a new PowerDNS server with the worker role.

The examples provided in this section describe the configuration of the deployment model with two PowerDNS servers deployed on separate VMs of the infrastructure nodes.

To prepare a model for a new PowerDNS server with the pool_manager role:

- 1. Open the classes/cluster/cluster_name/openstack directory of your Git project repository.
- 2. Create a dns.yml file with the following parameters:

```
classes:
- system.powerdns.server.single
- cluster.cluster_name.infra
parameters:
linux:
  network:
   interface:
    ens3: ${_param:linux_single_interface}
  host:
   dns01:
    address: ${ param:openstack dns node01 address}
    names:
    - dns01
    - dns01.${_param:cluster_domain}
   dns02:
    address: ${ param:openstack dns node02 address}
    names:
    - dns02
    - dns02.${_param:cluster domain}
 powerdns:
  server:
   enabled: true
   bind:
    address: ${ param:single address}
    port: 53
   backend:
    engine: sqlite
    dbname: pdns.sqlite3
    dbpath: /var/lib/powerdns
   api:
    enabled: true
```

```
key: ${_param:designate_pdns_api_key}
overwrite_supermasters: ${_param:powerdns_supermasters}
supermasters:
    ${_param:powerdns_supermasters}
webserver:
    enabled: true
    address: ${_param:single_address}
    port: ${_param:powerdns_webserver_port}
    password: ${_param:powerdns_webserver_password}
axfr_ips:
    - ${_param:openstack_control_node01_address}
    - ${_param:openstack_control_node02_address}
    - ${_param:openstack_control_node03_address}
```

```
- 127.0.0.1
```

Note

If you want to use the MySQL backend instead of the default SQLite one, modify the backend section parameters accordingly and configure your metadata model as described in Enable the MySQL backend for PowerDNS.

3. In init.yml, define the following parameters:

Example:

<pre>openstack_dns_node01_address: 10.0.0.1 openstack_dns_node02_address: 10.0.0.2 powerdns_axfr_ips: - \${_param:openstack_control_node01_address} - \${_param:openstack_control_node02_address} - \${_param:openstack_control_node03_address} - 127.0.0.1</pre>	
powerdns supermasters:	
 ip: \${_param:openstack_control_node01_address} nameserver: ns1.example.org account: master 	
 - ip: \${_param:openstack_control_node02_address} nameserver: ns2.example.org account: master 	
 ip: \${_param:openstack_control_node03_address} nameserver: ns3.example.org account: master 	
powerdns_overwrite_supermasters: True powerdns_webserver_password: gJ6n3gVaYP8eS powerdns_webserver_port: 8081	
	-

```
mysgl designate password: password
keystone designate password: password
designate service host: ${ param:openstack control address}
designate domain id: 5186883b-91fb-4891-bd49-e6769234a8fc
designate mdns address: 0.0.0.0
designate mdns port: 53
designate pdns api key: VxK9cMIFL5Ae
designate_pdns_api_endpoint: >
 "http://${ param:openstack dns node01 address}:${ param:powerdns_webserver_port}"
designate pool manager enabled: True
designate pool manager periodic sync interval: '120'
designate pool ns records:
 - hostname: 'ns1.example.org.'
  priority: 10
 - hostname: 'ns2.example.org.'
  priority: 20
 - hostname: 'ns3.example.org.'
  priority: 30
designate pool nameservers:
 - host: ${ param:openstack dns node01 address}
  port: 53
 - host: ${ param:openstack dns node02 address}
  port: 53
designate_pool_target type: pdns4
designate pool target masters:
 - host: ${ param:openstack control node01 address}
  port: ${ param:designate mdns port}
 - host: ${ param:openstack control node02 address}
  port: ${ param:designate mdns port}
 - host: ${ param:openstack control node03 address}
  port: ${ param:designate mdns port}
designate_pool_target_options:
 host: ${_param:openstack dns node01 address}
 port: 53
 api token: ${ param:designate pdns api key}
 api endpoint: ${ param:designate pdns api endpoint}
designate_version: ${ param:openstack version}
```

4. In control.yml, define the following parameters in the parameters section:

Example:

```
designate:
    pool_manager:
    enabled: ${_param:designate_pool_manager_enabled}
    periodic_sync_interval: ${_param:designate_pool_manager_periodic_sync_interval}
    server:
    backend:
    pdns4:
```

```
api_token: ${_param:designate_pdns_api_key}
  api endpoint: ${ param:designate pdns api endpoint}
mdns:
 address: ${ param:designate mdns address}
 port: ${_param:designate_mdns_port}
pools:
 default:
  description: 'test pool'
  targets:
   default:
    description: 'test target1'
   default1:
    type: ${ param:designate pool target type}
    description: 'test target2'
    masters: ${_param:designate_pool_target_masters}
    options:
     host: ${ param:openstack dns node02 address}
     port: 53
     api endpoint: >
       "http://${ param:openstack dns node02 address}:
       ${_param:powerdns_webserver_port}"
     api_token: ${_param:designate_pdns_api_key}
```

5. In classes/cluster/cluster_name/infra/kvm.yml, modify the classes and parameters sections.

Example:

• In the classes section:

classes:

- system.salt.control.cluster.openstack_dns_cluster

• In the parameters section, add the DNS parameters for VMs with the required location of DNS VMs on the kvm nodes and the planned resource usage for them.

```
salt:
    control:
    openstack.dns:
        cpu: 2
        ram: 2048
        disk_profile: small
        net_profile: default
    cluster:
        internal:
        node:
        dns01:
        provider: kvm01.${_param:cluster_domain}
```

dns02:
 provider: kvm02.\${_param:cluster_domain}

6. In classes/cluster/cluster_name/infra/config.yml, modify the classes and parameters sections.

Example:

• In the classes section:

```
classes:
- system.reclass.storage.system.openstack_dns_cluster
```

• In the parameters section, add the DNS VMs. For example:

```
reclass:

storage:

node:

openstack_dns_node01:

params:

linux_system_codename: xenial

openstack_dns_node02:

params:

linux_system_codename: xenial
```

7. Commit and push the changes.

Once done, proceed to deploy the PowerDNS server service as described in Deploy a new PowerDNS server for Designate.

Enable the MySQL backend for PowerDNS

You can use PowerDNS with the MySQL backend instead of the default SQLite one if required.

Warning

If you use PowerDNS in the slave mode, you must run MySQL with a storage engine that supports transactions, for example, InnoDB that is the default storage engine for MySQL in MCP.

Using a non-transaction storage engine may negatively affect your database after some actions, such as failures in an incoming zone transfer.

For more information, see: PowerDNS documentation.

Note

While following the procedure below, replace \${node} with a short name of the required node where applicable.

To enable the MySQL backend for PowerDNS:

- 1. Open your Reclass model Git repository.
- 2. Modify nodes/_generated/\${full_host_name}.yml, where \${full_host_name} is the FQDN of the particular node. Add the following classes and parameters:

```
classes:
- cluster.<cluster name>
- system.powerdns.server.single
....
parameters:
 powerdns:
  ...
  server:
   ...
   backend:
    engine: mysql
    host: ${_param:cluster_vip_address}
    port: 3306
    dbname: ${ param:mysql powerdns db name}
    user: ${ param:mysql powerdns db name}
    password: ${ param:mysql powerdns password}
```

Substitute <cluster_name> with the appropriate value.

Warning

Do not override the cluster_vip_address parameter.

3. Create a classes/system/galera/server/database/powerdns_\${node}.yml file and add the databases to use with the MySQL backend:

parameters:
inysqi.
server:
database:
powerdns_\${node}:
encoding: utf8
users:
- name : \${_param:mysql_powerdns_user_name_\${node}}
<pre>password: \${_param:mysql_powerdns_user_password_\${node}}</pre>
host: '%'
rights: all
- name : \${_param:mysql_powerdns_user_name_\${node}}
password : \${_param:mysql_powerdns_user_password_\${node}}
host : \${_param:cluster_local_address}
rights: all

4. Add the following class to classes/cluster/<cluster_name>/openstack/control.yml:

```
parameters:
_param:
...
mysql_powerdns_db_name_${node}: powerdns_${node}
mysql_powerdns_user_name_${node}: pdns_slave_${node}
mysql_powerdns_user_password_${node}: niliX1wuf]ongiVu
```

- 6. Log in to the Salt Master node.
- 7. Refresh pillar information:

```
salt '*' saltutil.refresh_pillar
```

5.

8. Apply the Galera states:

salt -C 'l@galera:master' state.sls galera

9. Proceed to deploying PowerDNS as described in Deploy a new PowerDNS server for Designate.

10 Optional. After you deploy PowerDNS:

- If you use MySQL InnoDB, add foreign key constraints to the tables. For details, see: PowerDNS documentation.
- If you use MySQL replication, to support the NATIVE domains, set binlog_format to MIXED or ROW to prevent differences in data between replicated servers. For details, see: MySQL documentation.

Deploy a new PowerDNS server for Designate

After you configure the Reclass model for PowerDNS server as a backend for Designate, proceed to deploying the PowerDNS server service as described below.

To deploy a PowerDNS server service:

- 1. Log in to the Salt Master node.
- 2. Configure basic operating system settings on the DNS nodes:

salt -C 'l@powerdns:server' state.sls linux,ntp,openssh

3. Apply the following state:

salt -C 'l@powerdns:server' state.sls powerdns

Once done, you can proceed to deploy Designate as described in Deploy Designate.

Seealso

- Deploy Designate
- BIND9 documentation
- PowerDNS documentation
- Plan the Domain Name System

Install OpenStack services

Many of the OpenStack service states make changes to the databases upon deployment. To ensure proper deployment and to prevent multiple simultaneous attempts to make these changes, deploy a service states on a single node of the environment first. Then, you can deploy the remaining nodes of this environment.

Keystone must be deployed before other services. Following the order of installation is important, because many of the services have dependencies of the others being in place.

Deploy Keystone

To deploy Keystone:

- 1. Log in to the Salt Master node.
- 2. Set up the Keystone service:

salt -C 'l@keystone:server and *01*' state.sls keystone.server salt -C 'l@keystone:server' state.sls keystone.server

3. Populate keystone services/tenants/admins:

salt -C 'l@keystone:client' state.sls keystone.client salt -C 'l@keystone:server' cmd.run ". /root/keystonercv3; openstack service list"

Note

By default, the latest MCP deployments use rsync for fernet and credential keys rotation. To configure rsync on the environments that use GlusterFS as a default rotation driver and credential keys rotation driver, see MCP Operations Guide: Migrate from GlusterFS to rsync for fernet and credential keys rotation.

Deploy Glance

The OpenStack Image service (Glance) provides a REST API for storing and managing virtual machine images and snapshots.

To deploy Glance:

1. Install Glance and verify that GlusterFS clusters exist:

salt -C 'l@glance:server and *01*' state.sls glance.server salt -C 'l@glance:server' state.sls glance.server salt -C 'l@glance:client' state.sls glance.client salt -C 'l@glusterfs:client' state.sls glusterfs.client

2. Update Fernet tokens before doing request on the Keystone server. Otherwise, you will get the following error: No encryption keys found; run keystone-manage fernet_setup to bootstrap one:

salt -C 'l@keystone:server' state.sls keystone.server salt -C 'l@keystone:server' cmd.run ". /root/keystonercv3; glance image-list" Deploy Nova

To deploy the Nova:

1. Install Nova:

salt -C 'l@nova:controller and *01*' state.sls nova.controller salt -C 'l@nova:controller' state.sls nova.controller salt -C 'l@keystone:server' cmd.run ". /root/keystonercv3; nova --debug service-list" salt -C 'l@keystone:server' cmd.run ". /root/keystonercv3; nova --debug list" salt -C 'l@nova:client' state.sls nova.client

2. On one of the controller nodes, verify that the Nova services are enabled and running:

root@cfg01:~# ssh ctl01 "source keystonercv3; nova service-list"

Deploy Cinder

To deploy Cinder:

1. Install Cinder:

salt -C 'l@cinder:controller and *01*' state.sls cinder salt -C 'l@cinder:controller' state.sls cinder

2. On one of the controller nodes, verify that the Cinder service is enabled and running:

salt -C 'l@keystone:server' cmd.run ". /root/keystonercv3; cinder list"

Deploy Neutron

To install Neutron:

```
salt -C 'l@neutron:server and *01*' state.sls neutron.server
salt -C 'l@neutron:server' state.sls neutron.server
salt -C 'l@neutron:gateway' state.sls neutron
salt -C 'l@keystone:server' cmd.run ". /root/keystonercv3; neutron agent-list"
```

Note

For installations with the OpenContrail setup, see Deploy OpenContrail manually.

Seealso

MCP Operations Guide: Configure Neutron OVS

Deploy Horizon

To install Horizon:

salt -C 'l@horizon:server' state.sls horizon salt -C 'l@nginx:server' state.sls nginx Deploy Heat

To deploy Heat:

1. Apply the following states:

salt -C 'l@heat:server and *01*' state.sls heat salt -C 'l@heat:server' state.sls heat

2. On one of the controller nodes, verify that the Heat service is enabled and running:

salt -C 'l@keystone:server' cmd.run ". /root/keystonercv3; openstack stack list"

Deploy Tenant Telemetry

Tenant Telemetry collects metrics about the OpenStack resources and provides this data through the APIs. This section describes how to deploy the Tenant Telemetry, which uses its own backends, such as Gnocchi and Panko, on a new or existing MCP cluster.

Caution!

The deployment of Tenant Telemetry based on Ceilometer, Aodh, Panko, and Gnocchi is supported starting from the Pike OpenStack release and does not support integration with StackLight LMA. However, you can add the Gnocchi data source to Grafana to view the Tenant Telemetry data.

Note

If you select Ceph as an aggregation metrics storage, a Ceph health warning 1 pools have many more objects per pg than average may appear due to Telemetry writing a number of small files to Ceph. The possible solutions are as follows:

- Increase the amount of PGs per pool. This option is suitable only if concurrent access is required together with request low latency.
- Suppress the warning by modifying mon pg warn max object skew depending on the number of objects. For details, see Ceph documentation.

Deploy Tenant Telemetry on a new cluster

Caution!

The deployment of Tenant Telemetry based on Ceilometer, Aodh, Panko, and Gnocchi is supported starting from the Pike OpenStack release and does not support integration with StackLight LMA. However, you can add the Gnocchi data source to Grafana to view the Tenant Telemetry data.

Follow the procedure below to deploy Tenant Telemetry that uses its own back ends, such as Gnocchi and Panko.

To deploy Tenant Telemetry on a new cluster:

- 1. Log in to the Salt Master node.
- 2. Set up the aggregation metrics storage for Gnocchi:
 - For Ceph, verify that you have deployed Ceph as described in Deploy a Ceph cluster and run the following commands:

salt -C "l@ceph:osd or l@ceph:osd or l@ceph:radosgw" saltutil.refresh_pillar salt -C "l@ceph:mon:keyring:mon or l@ceph:common:keyring:admin" state.sls ceph.mon salt -C "l@ceph:mon:keyring:mon or l@ceph:common:keyring:admin" mine.update salt -C "l@ceph:mon" state.sls 'ceph.mon' salt -C "l@ceph:setup" state.sls ceph.setup salt -C "l@ceph:osd or l@ceph:radosgw" state.sls ceph.setup.keyring

• For the file backend based on GlusterFS, run the following commands:

salt -C "l@glusterfs:server" saltutil.refresh_pillar salt -C "l@glusterfs:server" state.sls glusterfs.server.service salt -C "l@glusterfs:server:role:primary" state.sls glusterfs.server.setup salt -C "l@glusterfs:server" state.sls glusterfs salt -C "l@glusterfs:client" saltutil.refresh_pillar salt -C "l@glusterfs:client" state.sls glusterfs.client

3. Create users and databases for Panko and Gnocchi:

salt-call state.sls reclass.storage salt -C 'l@salt:control' state.sls salt.control salt -C 'l@keystone:client' state.sls keystone.client salt -C 'l@keystone:server state.sls linux.system.package salt -C 'l@galera:master' state.sls galera salt -C 'l@galera:slave' state.sls galera salt prx* state.sls nginx

- 4. Provision the mdb nodes:
 - 1. Apply basic states:

salt mdb* saltutil.refresh_pillar salt mdb* saltutil.sync_all salt mdb* state.sls linux.system salt mdb* state.sls linux,ntp,openssh,salt.minion salt mdb* system.reboot --async

2. Deploy basic services on mdb nodes:

```
salt mdb01\* state.sls keepalived
salt mdb\* state.sls keepalived
salt mdb\* state.sls haproxy
salt mdb\* state.sls memcached
salt mdb\* state.sls nginx
salt mdb\* state.sls apache
```

- 3. Install packages:
 - For Ceph:

salt mdb* state.sls ceph.common,ceph.setup.keyring

• For GlusterFS:

salt mdb* state.sls glusterfs

5. Update the cluster nodes:

salt '*' saltutil.refresh_pillar salt '*' state.sls linux.network.host

6. To use the Redis cluster as coordination backend and storage for Gnocchi, deploy Redis master:

salt -C 'l@redis:cluster:role:master' state.sls redis

7. Deploy Redis on all servers:

salt -C 'l@redis:server' state.sls redis

8. Deploy Gnocchi:

salt -C 'l@gnocchi:server and *01*' state.sls gnocchi.server salt -C 'l@gnocchi:server' state.sls gnocchi.server 9. Deploy Panko:

salt -C 'l@panko:server and *01*' state.sls panko salt -C 'l@panko:server' state.sls panko

10 Deploy Ceilometer:

salt -C 'l@ceilometer:server and *01*' state.sls ceilometer salt -C 'l@ceilometer:server' state.sls ceilometer salt -C 'l@ceilometer:agent' state.sls ceilometer -b 1

11 Deploy Aodh:

salt -C 'l@aodh:server and *01*' state.sls aodh salt -C 'l@aodh:server' state.sls aodh Deploy Tenant Telemetry on an existing cluster

Caution!

The deployment of Tenant Telemetry based on Ceilometer, Aodh, Panko, and Gnocchi is supported starting from the Pike OpenStack release and does not support integration with StackLight LMA. However, you can add the Gnocchi data source to Grafana to view the Tenant Telemetry data.

If you have already deployed an MCP cluster with OpenStack Pike, StackLight LMA, and Ceph (optionally), you can add the Tenant Telemetry as required.

Prepare the cluster deployment model

Before you deploy Tenant Telemetry on an existing MCP cluster, prepare your cluster deployment model by making the corresponding changes in your Git project repository.

To prepare the deployment model:

- 1. Open your Git project repository.
- 2. Set up the aggregation metrics storage for Gnocchi:
 - For the Ceph backend, define the Ceph users and pools:
 - 1. In the classes/cluster/<cluster_name>/ceph/setup.yml file, add the pools:

2. In the classes/cluster/<cluster_name>/openstack/init.yml file, specify the Telemetry user and pool:

```
parameters:
_param:
gnocchi_storage_user: gnocchi_user
gnocchi_storage_pool: telemetry_pool
```

3. In the classes/cluster/<cluster_name>/ceph/common.yml file, define the Telemetry user permissions:

```
parameters:
    ceph:
    common:
        keyring:
        gnocchi:
        name: ${_param:gnocchi_storage_user}
        caps:
        mon: "allow r"
        osd: "allow rwx pool=telemetry pool"
```

• For the file backend with GlusterFS, define the GlusterFS volume in the classes/cluster/<cluster_name>/infra/glusterfs.yml file:

classes:

- system.glusterfs.server.volume.gnocchi

Note

Mirantis recommends creating a separate LVM for the Gnocchi GlusterFS volume. The LVM must contain a file system with a large number of inodes. Four million of inodes allow keeping the metrics of 1000 Gnocchi resources with a medium Gnocchi archive policy for two days maximum.

3. In the classes/cluster/<cluster_name>/infra/config/init.yml file, add the class with Telemetry nodes definition:

classes:

- system.reclass.storage.system.openstack_telemetry_cluster

4. In the classes/cluster/<cluster_name>/infra/config/nodes.yml file, add the Telemetry node parameters:

parameters:
salt:
reclass:
storage:
node:
openstack_telemetry_node01:
params:
linux_system_codename: xenial
deploy_address: \${_param:openstack_telemetry_node01_deploy_address}
redis_cluster_role: 'master'
ceilometer_create_gnocchi_resources: true
openstack_telemetry_node02:
params:
linux_system_codename: xenial
deploy_address : \${_param:openstack_telemetry_node02_deploy_address}
redis_cluster_role: 'slave'
openstack_telemetry_node03:
params:
linux_system_codename: xenial
<pre>deploy_address: \${_param:openstack_telemetry_node03_deploy_address}</pre>
redis_cluster_role: 'slave'

5. In the classes/cluster/<cluster_name>/infra/kvm.yml file, add the Telemetry VM definition:

classes: - system.salt.control.cluster.openstack_telemetry_cluster parameters: salt: control: cluster: internal:
nde
mdb01
image: \${ param:salt control xenial image}
mdb02
image: \${ param:salt control xenial image}
mdb03:
image: \${ param:salt control xenial image}
virt:
nic:
##Telemetry
mdb:
eth1:
bridge: br-mgm
eth0:
bridge: br-ctl
-

6. Define the Panko, Gnocchi, Ceilometer, and Aodh secrets in classes/cluster/<cluster_name>/infra/secrets.yml:

parameters:
_param:
mysql_gnocchi_password_generated: <gnocchi mysql="" secret=""></gnocchi>
mysql_panko_password_generated: <panko mysql="" secret=""></panko>
mysql_aodh_password_generated: <aodh mysql="" secret=""></aodh>
keystone_gnocchi_password_generated: <gnocchi keystone="" secret=""></gnocchi>
keystone_panko_password_generated: <panko keystone="" secret=""></panko>
keystone_aodh_password_generated: <aodh keystone="" secret=""></aodh>
keystone_ceilometer_password_generated: <ceilometer keystone="" secret=""></ceilometer>
openstack_telemetry_redis_password_generated: <telemetry redis="" secret=""></telemetry>
aodh_memcache_secret_key_generated: <aodh memcache="" secret=""></aodh>
ceilometer_memcache_secret_key_generated: <ceilometer memcache="" secret=""></ceilometer>
panko_memcache_secret_key_generated: <panko memcache="" secret=""></panko>
gnocchi_memcache_secret_key_generated: <gnocchi memcache="" secret=""></gnocchi>
tenant_telemetry_keepalived_vip_password: <tenant keepalived="" secret="" telemetry=""></tenant>

7. In the classes/cluster/<cluster_name>/openstack/init.yml file, define the global parameters and linux:network:host:

parameters:	
_param:	
aodh_service_host : \${_param:openstack_telemetry_address}	
```
ceilometer_service_host: ${_param:openstack_telemetry_address}
 panko service host: ${ param:openstack telemetry address}
 gnocchi service host: ${ param:openstack telemetry address}
 # For Queens openstack set gnocchi version to 4.2, for Pike to 4.0
 gnocchi_version: 4.2
 panko_version: ${_param:openstack_version}
 mysql_gnocchi_password: ${_param:mysql_gnocchi_password_generated}
 mysql_panko_password: ${_param:mysql_panko_password_generated}
 mysql_aodh_password: ${_param:mysql_aodh_password_generated}
 keystone gnocchi password: ${ param:keystone gnocchi password generated}
 keystone panko password: ${ param:keystone panko password generated}
 keystone_aodh_password: ${_param:keystone_aodh_password_generated}
 keystone_ceilometer_password: ${_param:keystone_ceilometer_password_generated}
 ceilometer_agent_default_polling_interval: 15
 ceilometer agent default polling meters:
 _ "*"
 openstack telemetry redis password: ${ param:openstack telemetry redis password generated}
 aodh memcache secret key: ${ param:aodh memcache secret key generated}
 ceilometer_memcache_secret_key: ${_param:ceilometer_memcache_secret_key_generated}
 panko_memcache_secret_key: ${_param:panko_memcache_secret_key_generated}
 gnocchi_memcache_secret_key: ${_param:gnocchi_memcache_secret_key_generated}
 # openstack telemetry
 openstack telemetry address: 172.30.121.65
 openstack_telemetry_node01_deploy_address: 10.160.252.66
 openstack_telemetry_node02_deploy_address: 10.160.252.67
 openstack_telemetry_node03_deploy_address: 10.160.252.68
 openstack telemetry node01 address: 172.30.121.66
 openstack telemetry node02 address: 172.30.121.67
 openstack telemetry node03 address: 172.30.121.68
 openstack_telemetry_hostname: mdb
 openstack_telemetry_node01_hostname: mdb01
 openstack_telemetry_node02_hostname: mdb02
 openstack telemetry node03 hostname: mdb03
linux:
 network:
  host:
   mdb:
    address: ${ param:openstack telemetry address}
    names:
    - ${ param:openstack telemetry hostname}
    - ${_param:openstack_telemetry_hostname}.${_param:cluster_domain}
   mdb01:
    address: ${_param:openstack_telemetry_node01_address}
```

names: - \${_param:openstack_telemetry_node01_hostname} - \${_param:openstack_telemetry_node01_hostname}.\${_param:cluster_domain} mdb02: address: \${_param:openstack_telemetry_node02_address} names: - \${_param:openstack_telemetry_node02_hostname} - \${_param:openstack_telemetry_node02_hostname}.\${_param:cluster_domain} mdb03: address: \${_param:openstack_telemetry_node03_address} names: - \${_param:openstack_telemetry_node03_hostname} - \${_param:openstack_telemetry_node03_hostname}. - \${_param:openstack_telemetry_node03_hostname

- 8. Add endpoints:
 - 1. In the classes/cluster/<cluster_name>/openstack/control/init.yml file, verify that the Panko, Gnocchi, and Aodh endpoints are present:

classes:

- system.keystone.client.service.panko
- system.keystone.client.service.aodh
- system.keystone.client.service.gnocchi
- system.keystone.client.service.ceilometer

parameters:

_param: aodh_service_protocol: \${_param:cluster_internal_protocol} gnocchi_service_protocol: \${_param:cluster_internal_protocol} panko_service_protocol: \${_param:cluster_internal_protocol}

2. In the classes/cluster/<cluster_name>/openstack/proxy.yml file, add the Gnocchi, Aodh, and Panko public endpoints:

classes:

- system.nginx.server.proxy.openstack.gnocchi
- system.nginx.server.proxy.openstack.aodh
- system.nginx.server.proxy.openstack.panko
- 3. If HTTPS is enabled on the OpenStack internal endpoints, add the following parameters to classes/cluster/<cluster_name>/openstack/proxy.yml:

```
parameters:
_param:
nginx_proxy_openstack_aodh_protocol: 'https'
nginx_proxy_openstack_panko_protocol: 'https'
nginx_proxy_openstack_gnocchi_protocol: 'https'
```

9. In the classes/cluster/<cluster_name>/openstack/database/master.yml file, verify that the classes for the Panko, Gnocchi, Aodh databases are present:

```
classes:
```

- system.galera.server.database.panko
- system.galera.server.database.aodh
- system.galera.server.database.gnocchi

10 Change the configuration of the OpenStack controller nodes:

1. In the classes/cluster/<cluster_name>/openstack/control.yml file, add the Panko client package to test the OpenStack event CLI command. Additionally, verify that the file includes the ceilometer.client class.

classes:

- #- system.ceilometer.server.backend.influxdb
- #- system.heka.ceilometer collector.single
- #- system.aodh.server.cluster
- #- system.ceilometer.server.cluster
- system.keystone.server.notification.messagingv2
- system.glance.control.notification.messagingv2
- system.nova.control.notification.messagingv2
- system.neutron.control.notification.messagingv2
- system.ceilometer.client.nova control
- system.cinder.control.notification.messagingv2
- system.cinder.volume.notification.messagingv2
- system.heat.server.notification.messagingv2

parameters: linux: system: package: python-pankoclient:

In the classes/cluster/<cluster_name>/openstack/control/init.yml file, add the following classes:

classes:

- system.gnocchi.client
- system.gnocchi.client.v1.archive_policy.default
- 3. In the classes/cluster/<cluster_name>/stacklight/telemetry.yml file, remove InfluxDB from the mdb* node definition:

classes:

#- system.haproxy.proxy.listen.stacklight.influxdb_relay
#- system.influxdb.relay.cluster

#- system.influxdb.server.single
#- system.influxdb.database.ceilometer

- 11 Change the configuration of compute nodes:
 - 1. Open the classes/cluster/<cluster_name>/openstack/compute/init.yml file for editing.
 - 2. Verify that ceilometer.agent classes are present on the compute nodes:

classes:

- system.ceilometer.agent.telemetry.cluster
- system.ceilometer.agent.polling.default
- system.nova.compute.notification.messagingv2
- 3. If SSL in libvirt is enabled, set the following parameter:

```
parameters:
_param:
ceilometer_agent_ssl_enabled: True
```

12 In the classes/cluster/<cluster_name>/openstack/networking/telemetry.yml file, define the . networking schema for the mdb VMs:

```
# Networking template for Telemetry nodes
parameters:
linux:
network:
interface:
ens2: ${_param:linux_deploy_interface}
ens3: ${_param:linux_single_interface}
```

13 Define the Telemetry node YAML file:

- 1. Open the classes/cluster/<cluster_name>/openstack/telemetry.yml file for editing.
- 2. Specify the classes and parameters depending on the aggregation metrics storage:
 - For Ceph, specify:

```
classes:
- system.ce
```

- system.ceph.common.cluster
- system.gnocchi.common.storage.cephcluster.<cluster name>.ceph.common
- parameters:
- param:

```
gnocchi_storage_ceph_pool: ${_param:gnocchi_storage_pool}
gnocchi_storage_ceph_user: ${_param:gnocchi_storage_user}
```

• For the file backend with GlusterFS, specify:

```
classes:
```

- system.linux.system.repo.mcp.apt_mirantis.glusterfs
- system.glusterfs.client.cluster
- system.glusterfs.client.volume.gnocchi
- parameters:
 _param:
 gnocchi_glusterfs_service_host: \${_param:glusterfs_service_host}
- 3. Specify the following classes and parameters:

classes:	
 system.keepalived.cluster.instance.openstack. telemetry vip 	
- system.memcached.server.single	
- system.apache.server.single	
 system.apache.server.site.aodh 	
 system.apache.server.site.gnocchi 	
- system.apache.server.site.panko	
- service.redis.server.single	
 system. inoccni conserci uster 	
 system groups to space to	
- system ginechi common and gin terming terming	
system, eilometer, server, telemetry, cluster	
 system.cellometer.server.coordination.redis 	
 system.aodh.server.cluster 	
 system.aodh.server.coordination.redis 	
- system.panko.server.cluster	
 system.ceilometer.server.backend.gnocchi 	
 cluster. cluster_name>infra 	
 cluster cluster_name>.openstack.networking.telemetry 	
parameters	
_param:	
cluster vip adoress (_param:openstack_telemetry_adoress)	
keepintee_mp_internee(citis)	
Recentlined via particular second secon	
cluster local address: \${ param:single address}	
cluster node01 hostname; S(param:openstack telemetry node01 hostname)	
cluster node01 address: \${ param:openstack telemetry node01 address}	
cluster node02 hostname: \$(_param:openstack_telemetry_node02_hostname})	
cluster_node02_address: \$ (_param:openstack_telemetry_node02_address)	
cluster_node03_hostname: \$(_param:openstack_telemetry_node03_hostname)	
cluster node03 address: S{ paramopentatic telemetry node03 address}	
reuls semimer induced address styperamonastick elementery indexts address styperamonastick elementery indexts a	
realize antimiter industry material and particular industry (material) and and an antimiter industry (material) and	
* Redis dest'support utilityer automatication so. any username can be used in url	
openstack telemetry redis un: redis://openstack:5/ param:redis param:redis sentinel node01 address):263797ds=06sentinel=master 16sentinel fallback=5/ param:redis sentinel indiversity redis param:redis continel indiversity redis param:redis sentinel indiversity redis param:redis par	ess}:26379
gnocchi coordination url: \${ param.openstack_telemetry reds_url}	
gnocchi storage incoming_redis_url: \${ param:openstack_telemetry_redis_url}	
haproxy https_check_options:	
- http://k GET /	
- http://ose	
- tcplog	
naproxy panko api cneck params: cneck ssi verny none	
naproxy gnocchi api check params; check-sisi venti yinone	
naproxy addimage creek paramis, creek mer fos rasiniter 25 downiner 25 nos 5 rai 5 creek sis venily none	
enabled true	
authority: "5{ paramisalt minion ca authority)"	
key file: \${ paramopenstack apl cert key file}	
cert_file: \${_param:openstack_api_cert_cert_file}	
chain file: \$(_paramopenstack api_cert_all_file)	
redis:	
server:	
version: 5.0	
bind:	
address: \${_param:single_address}	
cluster:	
enabled: Irue	
nder Janmen	
nucrei (publication de la casa de	
master	
host; S(param;cluster node01 address)	
port: 6379	
sentinel:	
address: \$(_param:single_address)	
apache:	
server:	
modules	
- wsgl	
ginoccin:	
database :	
basis (paraminpenstack database address)	
enabled: true	
server:	
identity:	
protocol: \${_param:cluster_internal_protocol}	
proget	
toto, more pyriotementative instanadori to formula anorchismi	
- gnochimetric	
python-memcache	
panko:	
server:	
identity:	
protocol: \${_param:cluster_internal_protocol}	
database:	
ssi:	
enterted. Aug	
coordination backend:	
url: \${ paramopenstack telemetry redis url}	
identity:	
host: \$(_param:openstack_control_address)	
cellometer:	
server:	
coordination_backend:	
url: \${_param:openstack_telemetry_redis_url}	
Identity:	
nost: \${_baram:openstack_control_acoress}	
naproxy:	
proxy: litetar	
navar.	
parino mpr. Tupo Mone	
options: \$(param:haproxy https://check.options)	
anoch ani	
type: None	
options: \$(_param:haproxy_https_check_options)	
aodh-api:	
type: None	
options: \${_param:haproxy_https_check_options}	

Once done, proceed to Deploy Tenant Telemetry.

Deploy Tenant Telemetry

Once you have performed the steps described in Prepare the cluster deployment model, deploy Tenant Telemetry on an existing MCP cluster as described below.

To deploy Tenant Telemetry on an existing MCP cluster:

- 1. Log in to the Salt Master node.
- 2. Depending on the type of the aggregation metrics storage, select from the following options:
 - For Ceph, deploy the newly created users and pools:

salt -C "l@ceph:osd or l@ceph:osd or l@ceph:radosgw" saltutil.refresh_pillar salt -C "l@ceph:mon:keyring:mon or l@ceph:common:keyring:admin" state.sls ceph.mon salt -C "l@ceph:mon:keyring:mon or l@ceph:common:keyring:admin" mine.update salt -C "l@ceph:mon" state.sls 'ceph.mon' salt -C "l@ceph:setup" state.sls ceph.setup salt -C "l@ceph:osd or l@ceph:radosgw" state.sls ceph.setup.keyring

• For the file backend with GlusterFS, deploy the Gnocchi GlusterFS configuration:

salt -C "l@glusterfs:server" saltutil.refresh_pillar salt -C "l@glusterfs:server" state.sls glusterfs

3. Run the following commands to generate definitions under /srv/salt/reclass/nodes/_generated:

salt-call saltutil.refresh_pillar salt-call state.sls reclass.storage

4. Verify that the following files were created:

ls -1 /srv/salt/reclass/nodes/_generated | grep mdb mdb01.domain.name mdb02.domain.name mdb03.domain.name

5. Create the mdb VMs:

salt -C 'l@salt:control' saltutil.refresh_pillar salt -C 'l@salt:control' state.sls salt.control

6. Verify that the mdb nodes were successfully registered on the Salt Master node:

salt-key -L | grep mdb mdb01.domain.name mdb02.domain.name mdb03.domain.name

- 7. Create endpoints:
 - 1. Create additional endpoints for Panko and Gnocchi and update the existing Ceilometer and Aodh endpoints, if any:

salt -C 'l@keystone:client' saltutil.refresh_pillar salt -C 'l@keystone:client' state.sls keystone.client

2. Verify the created endpoints:

```
salt -C 'l@keystone:client' cmd.run '. /root/keystonercv3 ; openstack endpoint list --service ceilometer'
salt -C 'l@keystone:client' cmd.run '. /root/keystonercv3 ; openstack endpoint list --service aodh'
salt -C 'l@keystone:client' cmd.run '. /root/keystonercv3 ; openstack endpoint list --service panko'
salt -C 'l@keystone:client' cmd.run '. /root/keystonercv3 ; openstack endpoint list --service gnocchi'
```

3. Optional. Install the Panko client if you have defined it in the cluster model:

salt -C 'l@keystone:server' saltutil.refresh_pillar salt -C 'l@keystone:server' state.sls linux.system.package

- 8. Create databases:
 - 1. Create databases for Panko and Gnocchi:

salt -C 'l@galera:master or l@galera:slave' saltutil.refresh_pillar salt -C 'l@galera:master' state.sls galera salt -C 'l@galera:slave' state.sls galera

2. Verify that the databases were successfully created:

salt -C 'l@galera:master' cmd.run 'mysql --defaults-extra-file=/etc/mysql/debian.cnf -e "show databases;"' salt -C 'l@galera:master' cmd.run 'mysql --defaults-extra-file=/etc/mysql/debian.cnf -e "select User from mysql.user;"'

9. Update the NGINX configuration on the prx nodes:

salt prx* saltutil.refresh_pillar
salt prx* state.sls nginx

10 Disable the Ceilometer and Aodh services deployed on the ctl nodes:

```
for service in aodh-evaluator aodh-listener aodh-notifier \
    ceilometer-agent-central ceilometer-agent-notification \
    ceilometer_collector
do
salt ctl\* service.stop $service
salt ctl\* service.disable $service
done
```

- 11 Provision the mdb nodes:
 - 1. Apply the basic states for the mdb nodes:

salt mdb* saltutil.refresh_pillar salt mdb* saltutil.sync_all salt mdb* state.sls linux.system salt-call state.sls salt.minion.ca salt mdb* state.sls linux,ntp,openssh,salt.minion salt mdb* system.reboot --async

2. Install basic services on the mdb nodes:

salt mdb01* state.sls keepalived salt mdb* state.sls keepalived salt mdb* state.sls haproxy salt mdb* state.sls memcached salt mdb* state.sls apache

- 3. Install packages depending on the aggregation metrics storage:
 - For Ceph:

salt mdb* state.sls ceph.common,ceph.setup.keyring

• For the file backend with GlusterFS:

salt mdb* state.sls glusterfs

4. Install the Redis, Gnocchi, Panko, Ceilometer, and Aodh services on mdb nodes:

salt -C 'l@redis:cluster:role:master' state.sls redis
salt -C 'l@gnocchi:server:role:primary' state.sls gnocchi
salt -C 'l@gnocchi:server' state.sls gnocchi
salt -C 'l@gnocchi:client' state.sls gnocchi.client -b 1
salt -C 'l@panko:server:role:primary' state.sls panko
salt -C 'l@panko:server' state.sls panko
salt -C 'l@ceilometer:server:role:primary' state.sls ceilometer
salt -C 'l@ceilometer:server' state.sls ceilometer
salt -C 'l@aodh:server:role:primary' state.sls aodh
salt -C 'l@aodh:server' state.sls aodh

- 5. Update the cluster nodes:
 - 1. Verify that the mdb nodes were added to /etc/hosts on every node:

salt '*' saltutil.refresh_pillar
salt '*' state.sls linux.network.host

2. For Ceph, run:

salt -C 'l@ceph:common and not mon*' state.sls ceph.setup.keyring

6. Verify that the Ceilometer agent is deployed and up to date:

salt -C 'l@ceilometer:agent' state.sls salt.minion salt -C 'l@ceilometer:agent' state.sls ceilometer

7. Apply the configuration for Nova messaging notifications on the OpenStack controller nodes:

salt -C 'l@nova:controller' state.sls nova.controller -b 1

8. Update the StackLight LMA configuration:

salt mdb* state.sls telegraf salt mdb* state.sls fluentd salt '*' state.sls salt.minion.grains salt '*' saltutil.refresh_modules salt '*' mine.update salt -C 'l@docker:swarm and l@prometheus:server' state.sls prometheus salt -C 'l@sphinx:server' state.sls sphinx

12 Verify Tenant Telemetry:

Note

Metrics will be collected for the newly created resources. Therefore, launch an instance or create a volume before executing the commands below.

1. Verify that metrics are available:

salt ctl01* cmd.run '. /root/keystonercv3 ; openstack metric list --limit 50'

2. If you have installed the Panko client on the ctl nodes, verify that events are available:

salt ctl01* cmd.run '. /root/keystonercv3 ; openstack event list --limit 20'

3. Verify that the Aodh endpoint is available:

salt ctl01* cmd.run '. /root/keystonercv3 ; openstack --debug alarm list'

The output will not contain any alarm because no alarm was created yet.

4. For Ceph, verify that metrics are saved to the Ceph pool (telemtry_pool for the cloud):

salt cmn01* cmd.run 'rados df'

Seealso

- MCP Reference Architecture: Tenant Telemetry
- MCP Operations Guide: Enable the Gnocchi archive policies in Tenant Telemetry
- MCP Operations Guide: Add the Gnocchi data source to Grafana

Deploy Designate

Designate supports underlying DNS servers, such as BIND9 and PowerDNS. You can use either a new or an existing DNS server as a backend for Designate. By default, Designate is deployed on three OpenStack API VMs of the VCP nodes.

Prepare a deployment model for the Designate deployment

Before you deploy Designate with a new or existing BIND9 or PowerDNS server as a backend, prepare your cluster deployment model by making corresponding changes in your Git project repository.

To prepare a deployment model for the Designate deployment:

- 1. Verify that you have configured and deployed a DNS server as a backend for Designate as described in Deploy a DNS backend for Designate.
- 2. Open the classes/cluster/<cluster_name>/openstack/ directory in your Git project repository.
- 3. In control_init.yml, add the following parameter in the classes section:

```
classes:
```

- system.keystone.client.service.designate

4. In control.yml, add the following parameter in the classes section:

```
classes:
```

- system.designate.server.cluster

5. In database.yml, add the following parameter in the classes section:

```
classes:
```

- system.galera.server.database.designate

- 6. Add your changes to a new commit.
- 7. Commit and push the changes.

Once done, proceed to Install Designate.

Install Designate

This section describes how to install Designate on a new or existing MCP cluster.

Before you proceed to installing Designate:

- 1. Configure and deploy a DNS backend for Designate as described in Deploy a DNS backend for Designate.
- 2. Prepare your cluster model for the Designate deployment as described in Prepare a deployment model for the Designate deployment.

To install Designate on a new MCP cluster:

- 1. Log in to the Salt Master node.
- 2. Apply the following states:

salt -C 'l@designate:server and *01*' state.sls designate.server salt -C 'l@designate:server' state.sls designate

To install Designate on an already deployed MCP cluster:

- 1. Log in to the Salt Master node.
- 2. Refresh Salt pillars:

salt '*' saltutil.refresh_pillar

3. Create databases for Designate by applying the mysql state:

salt -C 'l@galera:master' state.sls galera

4. Create the HAProxy configuration for Designate:

salt -C 'l@haproxy:proxy' state.sls haproxy

5. Create endpoints for Designate in Keystone:

salt -C 'l@keystone:client' state.sls keystone.client

6. Apply the designate states:

salt -C 'l@designate:server and *01*' state.sls designate.server salt -C 'l@designate:server' state.sls designate

7. Verify that the Designate services are up and running:

salt -C 'l@designate:server' cmd.run ". /root/keystonercv3; openstack dns service list"

Example of the system response extract:

ctl02.virtual-mcp-ocata-ovs.local:	
id hostname service_name status stats capabiliti	es
++ ++ ++ +++ 172df3c63-ed26 ctl03 worker UP - - c3d425bb-131f ctl03 central UP - - 1af4c4ef-57fb ctl03 producer UP - - 75ac49bc-112c ctl03 api UP - - ee0f24cd-0d7a ctl03 mdns UP - - 680902ef-380a ctl02 worker UP - - f09dca51-c4ab ctl01 producer UP - -	
18ae9e1f-7248 ctl01 worker UP - - e96dffc1-dab2 ctl01 central UP - - 3859f1e7-24c0 ctl01 api UP - - 18ee47a4-8e38 ctl01 mdns UP - - 4c807478-f545 ctl02 api UP - - b66305e3-a75f ctl02 central UP - - 3c0d2310-d852 ctl02 mdns UP - -	

Seealso

Designate operations

Seealso

- Deploy a DNS backend for Designate
- Plan the Domain Name System
- Designate operations

Deploy Barbican

Barbican is an OpenStack service that provides a REST API for secured storage as well as for provisioning and managing of secrets such as passwords, encryption keys, and X.509 certificates.

Barbican requires a backend to store secret data in its database. If you have an existing Dogtag backend, deploy and configure Barbican with it as described in Deploy Barbican with the Dogtag backend. Otherwise, deploy a new Dogtag backend as described in Deploy Dogtag. For testing purposes, you can use the simple_crypto backend.

Note

Due to a limitation, unshelving of an instance and booting from a snapshot require manual intervention when integration between Nova and Barbican is enabled and instances are only allowed to boot from signed Glance images. Both shelve and snapshot operations in Nova create an image in Glance. You must manually sign this image to enable Nova to boot an instance from this snapshot or to unshelve an instance. Nova does not automatically sign the snapshot images it creates.

Deploy Dogtag

Dogtag is one of the Barbican plugins that represents a backend for storing symmetric keys, for example, for volume encryption, as well as passwords, and X.509 certificates.

To deploy the Dogtag backend for Barbican:

- 1. Open the classes/cluster/<cluster_name>/ directory of your Git project repository.
- 2. In openstack/control.yml, add the Dogtag class and specify the required parameters. For example:

- system.dogtag.server.cluster
parameters.
_param:
dogtag_master_nost: \${_param:openstack_control_node01_nostname}.\${_param:cluster_domain}
naproxy_dogtag_bind_port: 8444
cluster_dogtag_port: 8443
Dogtag listens on 8443 but there is no way to bind it to a
Specific IP, as in this setup Dogtag is installed on ctl nodes
Change port on haproxy side to avoid binding conflict.
haproxy_dogtag_bind_port: 8444
cluster_dogtag_port: 8443
<pre>dogtag_master_host: ctl01.\${linux:system:domain}</pre>
dogtag_pki_admin_password: workshop
dogtag_pki_client_database_password: workshop
dogtag_pki_client_pkcs12_password: workshop
dogtag pki ds password: workshop
dogtag pki token password: workshop
dogtag pki security domain password: workshop
dogtag pki clone pkcs12 password workshop
dogtag
server.
Idap hostname: \${linux:network:fadn}
Idap dn password: workshop
Idan admin nassword: workshon
export nem file nath: /etc/dogtag/kra_admin_cert_nem

3. In classes/cluster/<cluster_name>/infra/config/init.yml, add the - system.salt.master.formula.pkg.dogtag class to the classes section.

For example:

```
classes:
- system.salt.master.formula.pkg.dogtag
---
```

4. In classes/cluster/<cluster_name>/infra/config/nodes.yml, specify the dogtag_cluster_role: master parameter in the openstack_control_node01 section, and the

dogtag_cluster_role: slave parameter in the openstack_control_node02 and openstack_control_node03 sections.

For example:

<pre>node: openstack_control_node01: classes: - service.galera.master.cluster - service.dogtag.server.cluster.master params: mysql_cluster_role: master linux_system_codename: xenial dogtag_cluster_role: master openstack_control_node02: classes: - service.galera.slave.cluster</pre>	
- service.dogtag.server.cluster.slave	
params:	
mysql_cluster_role: slave	
linux_system_codename: xenial	
dogtag_cluster_role: slave	
openstack_control_node03:	
classes:	
 service.galera.slave.cluster 	
 service.dogtag.server.cluster.slave 	
params:	
mysql_cluster_role: slave	
linux_system_codename: xenial dogtag_cluster_role: slave	

- 5. Commit and push the changes to the project Git repository.
- 6. Log in to the Salt Master node.
- 7. Update your Salt formulas at the system level:
 - 1. Change the directory to /srv/salt/reclass.
 - 2. Run the git pull origin master command.
 - 3. Run the salt-call state.sls salt.master command.
- 8. Apply the following states:

```
salt -C 'l@salt:master' state.sls salt,reclass
salt -C 'l@dogtag:server and *01*' state.sls dogtag.server
salt -C 'l@dogtag:server' state.sls dogtag.server
salt -C 'l@haproxy:proxy' state.sls haproxy
```

9. Proceed to Deploy Barbican with the Dogtag backend.

Note

If the dogtag:export_pem_file_path variable is defined, the system imports kra admin certificate to the defined .pem file and to the Salt Mine dogtag_admin_cert variable. After that, Barbican and other components can use kra admin certificate.

Seealso

Dogtag OpenStack documentation

Deploy Barbican with the Dogtag backend

You can deploy and configure Barbican to work with the private Key Recovery Agent (KRA) Dogtag backend.

Before you proceed with the deployment, make sure that you have a running Dogtag backend. If you do not have a Dogtag backend yet, deploy it as described in Deploy Dogtag.

To deploy Barbican with the Dogtag backend:

- 1. Open the classes/cluster/<cluster_name>/ directory of your Git project repository.
- 2. In infra/config/init.yml, add the following class:

```
classes:
- system.keystone.client.service.barbican
```

3. In openstack/control.yml, modify the classes and parameters sections:

```
classes:
- system.apache.server.site.barbican
- system.galera.server.database.barbican
- system.barbican.server.cluster
- service.barbican.server.plugin.dogtag
....
parameters:
 _param:
  apache barbican api address: ${ param:cluster local address}
  apache_barbican_api_host: ${_param:single_address}
  apache_barbican_ssl: ${_param:nginx_proxy_ssl}
  barbican dogtag nss password: workshop
  barbican dogtag host: ${ param:cluster vip address}
  barbican:
   server:
    enabled: true
    dogtag admin cert:
     engine: mine
     minion: ${ param:dogtag master host}
    ks notifications enable: True
    store:
     software:
       store plugin: dogtag_crypto
       global default: True
    plugin:
     dogtag:
       port: ${_param:haproxy_dogtag_bind_port}
  nova:
   controller:
    barbican:
```

```
enabled: ${_param:barbican_integration_enabled}
cinder:
controller:
barbican:
enabled: ${_param:barbican_integration_enabled}
glance:
server:
barbican:
enabled: ${_param:barbican_integration_enabled}
```

4. In openstack/init.yml, modify the parameters section. For example:

```
parameters:
_param:
...
barbican_service_protocol: ${_param:cluster_internal_protocol}
barbican_service_host: ${_param:openstack_control_address}
barbican_version: ${_param:openstack_version}
mysql_barbican_password: workshop
keystone_barbican_password: workshop
barbican_dogtag_host: "dogtag.example.com"
barbican_dogtag_nss_password: workshop
barbican_integration_enabled: true
```

5. In openstack/proxy.yml, add the following class:

classes:

- system.nginx.server.proxy.openstack.barbican
- 6. Optional. Enable image verification:
 - 1. In openstack/compute/init.yml, add the following parameters:

```
parameters:
_param:
nova:
compute:
barbican:
enabled: ${_param:barbican_integration_enabled}
```

2. In openstack/control.yml, add the following parameters:

```
parameters:
_param:
nova:
controller:
```

barbican: enabled: \${_param:barbican_integration_enabled}

Note

This configuration changes the requirement to the Glance image upload procedure. All glance images will have to be updated with signature information. For details, see: OpenStack Nova and OpenStack Glance documentation.

7. Optional. In openstack/control.yml, enable volume encryption supported by the key manager:

parameters:	
_param:	
cinder:	
volume:	
barbican:	
enabled: \${_par	am:barbican_integration_enabled}

8. Optional. In init.yml, add the following parameters if you plan to use a self-signed certificate managed by Salt:

- 9. Distribute the Dogtag KRA certificate from the Dogtag node to the Barbican nodes. Select from the following options (engines):
 - Define the KRA admin certificate manually in pillar by editing the infra/openstack/control.yml file:

```
barbican:
server:
dogtag_admin_cert:
engine: manual
key: |
<key_data>
```

• Receive the Dogtag certificate from Salt Mine. The Dogtag formula sends the KRA certificate to the dogtag_admin_cert Mine function. Add the following to infra/openstack/control.yml:

barbican:
 server:
 dogtag_admin_cert:
 engine: mine
 minion: <dogtag_minion_node_name>

• If some additional steps were applied to install the KRA certificate and these steps are out of scope of the Barbican formula, the formula has the noop engine to perform no operations. If the noop engine is defined in infra/openstack/control.yml, the Barbican formula does nothing to install the KRA admin certificate.

barbican: server: dogtag_admin_cert: engine: noop

In this case, manually populate the Dogtag KRA certificate in /etc/barbican/kra_admin_cert.pem on the Barbican nodes.

10 Commit and push the changes to the project Git repository.

11 Log in to the Salt Master node.

12 Update your Salt formulas at the system level:

- 1. Change the directory to /srv/salt/reclass.
- 2. Run the git pull origin master command.
- 3. Run the salt-call state.sls salt.master command.
- 13 If you enabled the usage of a self-signed certificate managed by Salt, apply the following . state:

salt -C 'l@salt:minion' state.apply salt.minion

14 Apply the following states:

salt -C 'l@keystone:client' state.sls keystone.client

salt -C 'l@galera:master' state.sls galera.server

salt -C 'l@galera:slave' state.apply galera

salt -C 'l@nginx:server' state.sls nginx

salt -C 'l@barbican:server and *01*' state.sls barbican.server

salt -C 'l@barbican:server' state.sls barbican.server salt -C 'l@barbican:client' state.sls barbican.client

15 If you enabled image verification by Nova, apply the following states:

salt -C 'l@nova:controller' state.sls nova -b 1 salt -C 'l@nova:compute' state.sls nova

16 If you enabled volume encryption supported by the key manager, apply the following state:

salt -C 'l@cinder:controller' state.sls cinder -b 1

17 If you have async workers enabled, restart the Barbican worker service:

salt -C 'l@barbican:server' service.restart barbican-worker

18 Restart the Barbican API server:

salt -C 'l@barbican:server' service.restart apache2

19 Verify that Barbican works correctly. For example:

openstack secret store --name mysecret --payload j4=]d21

Deploy Barbican with the simple_crypto backend

Warning

The deployment of Barbican with the simple_crypto backend described in this section is intended for testing and evaluation purposes only. For production deployments, use the Dogtag backend. For details, see: Deploy Dogtag.

You can configure and deploy Barbican with the simple_crypto backend.

To deploy Barbican with the simple_crypto backend:

- 1. Open the classes/cluster/<cluster_name>/ directory of your Git project repository.
- 2. In openstack/database/init.yml, add the following class:

```
classes:
- system.mysgl.client.database.barbican
```

3. In openstack/control/init.yml, add the following class:

```
classes:
- system.keystone.client.service.barbican
```

4. In infra/openstack/control.yml, modify the parameters section. For example:

classes:

- system.apache.server.site.barbican
- system.barbican.server.cluster
- service.barbican.server.plugin.simple_crypto

```
parameters:
_param:
barbican:
server:
store:
software:
crypto_plugin: simple_crypto
store_plugin: store_crypto
global_default: True
```

5. In infra/secret.yml, modify the parameters section. For example:

```
parameters:
    _param:
    barbican_version: ${_param:openstack_version}
```

barbican_service_host: \${_param:openstack_control_address}
mysql_barbican_password: password123
keystone_barbican_password: password123
barbican_simple_crypto_kek: "base64 encoded 32 bytes as secret key"

6. In openstack/proxy.yml, add the following class:

classes:

- system.nginx.server.proxy.openstack.barbican

- 7. Optional. Enable image verification:
 - 1. In openstack/compute/init.yml, add the following parameters:

```
parameters:
_param:
nova:
compute:
barbican:
enabled: ${_param:barbican_integration_enabled}
```

2. In openstack/control.yml, add the following parameters:

Note

This configuration changes the requirement for the Glance image upload procedure. All glance images will have to be updated with signature information. For details, see: OpenStack Nova and OpenStack Glance documentation.

8. Optional. In openstack/control.yml, enable volume encryption supported by the key manager:

parameters: _param: cinder: volume: barbican: enabled: \${_param:barbican_integration_enabled} 9. Optional. In init.yml, add the following parameters if you plan to use a self-signed certificate managed by Salt:

```
parameters:
_param:
salt:
minion:
trusted_ca_minions:
- cfg01
```

10 Commit and push the changes to the project Git repository.

11 Log in to the Salt Master node.

- 12 Update your Salt formulas at the system level:
 - 1. Change the directory to /srv/salt/reclass.
 - 2. Run the git pull origin master command.
 - 3. Run the salt-call state.sls salt.master command.
- 13 If you enabled the usage of a self-signed certificate managed by Salt, apply the following . state:

salt -C 'l@salt:minion' state.apply salt.minion

14 If you enabled image verification by Nova, apply the following states:

salt -C 'l@nova:controller' state.sls nova -b 1 salt -C 'l@nova:compute' state.sls nova

15 If you enabled volume encryption supported by the key manager, apply the following state:

salt -C 'l@cinder:controller' state.sls cinder -b 1

16 Apply the following states:

salt -C 'l@keystone:client' state.apply keystone.client salt -C 'l@galera:master' state.apply galera.server salt -C 'l@galera:slave' state.apply galera salt -C 'l@nginx:server' state.apply nginx salt -C 'l@haproxy:proxy' state.apply haproxy.proxy salt -C 'l@barbican:server and *01*' state.sls barbican.server

salt -C 'l@barbican:server' state.sls barbican.server

salt -C 'l@barbican:client' state.sls barbican.client

Seealso

Barbican OpenStack documentation

Deploy Ironic

While virtualization provides outstanding benefits in server management, cost efficiency, and resource consolidation, some cloud environments with particularly high I/O rate may require physical servers as opposed to virtual.

MCP supports bare-metal provisioning for OpenStack environments using the OpenStack Bare Metal service (Ironic). Ironic enables system administrators to provision physical machines in the same fashion as they provision virtual machines.

Note

Starting from the 2019.2.6 maintenance update, Ironic is officially supported and integrated into MCP. Before the 2019.2.6 maintenance update, Ironic is available as technical preview and can be used for testing and evaluation purposes only.

Limitations

When you plan on using the OpenStack Bare Metal provisioning service (Ironic), consider the following limitations:

Specific hardware limitations

When choosing hardware (switch) to be used by Ironic, consider hardware limitations of a specific vendor.

Only iSCSI deploy drivers are enabled

Ironic is deployed with only iSCSI deploy drivers enabled which may pose performance limitations for deploying multiple nodes concurrently. You can enable agent-based Ironic drivers manually after deployment if the deployed cloud has a working Swift-compatible object-store service with support for temporary URLs, with Glance configured to use the object store service to store images. For more information on how to configure Glance for temporary URLs, see OpenStack documentation.

Seealso

MCP Ironic supported features and known limitations

Modify the deployment model

To use the OpenStack Bare Metal service, you need to modify your Reclass model before deploying a new OpenStack environment. You can also deploy the OpenStack Bare Metal service in the existing OpenStack environment.

As bare-metal configurations vary, this section provides examples of deployment model modifications. You may need to tailor them for your specific use case.

The configuration examples in this section presuppose the following:

- The OpenStack Bare Metal API service runs on the OpenStack Controller node
- The Bare Metal service for ironic-conductor and other services per the bare-metal role reside on the bmt01, bmt02, and bmt03 nodes
- Separate flat network is used between the bmt* and gtw* nodes
- The network configuration:
 - Control network: 10.11.0.0/16
 - Bare-metal network: 10.13.0.0/16
 - Bare-metal interface: ens6

To modify the deployment model:

1. Select from the following options:

- For the MCP versions prior to the 2019.2.6 maintenance update, Create a deployment metadata model.
- For the MCP versions 2019.2.6 and later, when creating a deployment model as described in Create a deployment metadata model, set the ironic_enabled parameter to True that will automatically add most of the Ironic parameters and classes described in the following steps.
- 2. Open the cluster level of your Reclass model.
- 3. In the ./openstack/init.yml file, add or update the following parameters to match your specific bare metal configuration:

Caution!

The openstack_baremetal_neutron_subnet_ parameters must match your bare metal network settings. The bare metal nodes must be connected to the network before the deployment. During the deployment, MCP automatically registers this network in the OpenStack Networking service.

parameters: _param: openstack_baremetal_address: 10.11.0.5

```
openstack baremetal node01 address: 10.11.0.6
openstack baremetal node02 address: 10.11.0.7
openstack baremetal node03 address: 10.11.0.8
openstack baremetal node01 hostname: bmt01
openstack baremetal node02 hostname: bmt02
openstack baremetal node03 hostname: bmt03
openstack baremetal address baremetal: 10.13.0.10
openstack baremetal node01 baremetal address: 10.13.0.11
openstack_baremetal_node02_baremetal_address: 10.13.0.12
openstack baremetal node03 baremetal address: 10.13.0.13
openstack baremetal neutron subnet cidr: 10.13.0.0/16
openstack baremetal neutron subnet allocation start: 10.13.90.1
openstack baremetal neutron subnet allocation end: 10.13.199.255
mysql ironic password: ${ param:mysql ironic password generated}
keystone ironic password: ${ param:keystone ironic password generated}
ironic version: ${ param:openstack version}
```

4. Verify that the following pillars are defined in ./openstack/init.yml:

5. Verify that the following classes are included into infra/config/init.yml:

- system.reclass.storage.system.openstack_baremetal_cluster- system.salt.master.formula.pkg.baremetal

6. Verify that the following classes are included into openstack/database.yml:

- system.galera.server.database.ironic

7. Verify that the following parameters are defined in infra/secrets.yml:

```
mysql_ironic_password: some_password
keystone_ironic_password: some_password
keepalived openstack_baremetal_password_generated: some password
```

8. Verify that the following pillars and classes are added to openstack/control.yml:

```
- system.haproxy.proxy.listen.openstack.ironic
- system.ironic.api.cluster
parameters:
    _param:
    ironic_service_host: ${_param:cluster_vip_address}
    cluster_baremetal_local_address: ${_param:cluster_local_address}
    ironic_api_type: 'public'
neutron:
    server:
    ironic_enabled: True
    backend:
    ironic_vlan_range: 100:1000
```

9. Verify that the following classes are included into openstack/control/init.yml:

```
- service.ironic.client
```

- system.neutron.client.service.ironic
- system.keystone.client.service.ironic
- 10 Verify that the openstack/baremetal.yml file is present in the model with the following . exemplary content:

classes:

- system.linux.system.repo.mcp.apt_mirantis.extra
- system.linux.system.repo.mcp.apt_mirantis.openstack
- cluster.\${CLUSTER_NAME}.infra
- system.ironic.api.cluster
- system.ironic.conductor.cluster
- system.ironic.tftpd_hpa
- system.nova.compute_ironic.cluster
- system.apache.server.single
- system.apache.server.site.ironic
- system.keepalived.cluster.instance.openstack_baremetal_vip
- system.haproxy.proxy.listen.openstack.ironic_deploy
- system.haproxy.proxy.single

parameters:

11 Verify that the following pillars and classes are added into openstack/proxy.yml:

```
classes:
- system.nginx.server.proxy.openstack.ironic
parameters:
_param:
ironic_service_host: ${_param:openstack_control_address}
```

12 Verify that the following pillars are added into openstack/gateway.yml:

```
neutron:
 gateway:
  ironic enabled: True
linux:
 network:
  interface:
   br-baremetal:
    enabled: true
    type: ovs bridge
    mtu: ${ param:interface mtu}
   ens6:
    enabled: true
    name: ens6
    type: eth
    proto: manual
    ovs bridge: br-baremetal
    ovs type: OVSPort
    ipflush onchange: true
    restart on ipflush: true
```

13 In openstack/control.yml, enroll the bare metal nodes dedicated for Ironic:

parameters: ironic: client: enabled: true

```
nodes:
 admin identity:
  - name: <node name>
   driver: pxe_ipmitool
   properties:
    local gb: <size of node's disk in GiB>
    cpus: <Number of CPUs on the node>
    memory_mb: <RAM size of the node in MiB>
    cpu_arch: <architecture of node's CPU>
   driver_info:
    ipmi username: <username for IPMI>
    ipmi_password: <password for the IPMI user>
    ipmi address: <IPMI address of the node>
   ports:
    - address: <MAC address of the node port1>
    - address: <MAC address of the node port2>
```

14 Proceed to Install the Bare Metal service components.

Install the Bare Metal service components

Caution!

The procedure below applies to existing MCP clusters and to new MCP clusters prior to the 2019.2.6 maintenance update.

Starting from 2019.2.6, you can skip the procedure below for new MCP clusters and deploy Ironic automatically using the OpenStack deployment pipeline as described in Deploy an OpenStack environment.

After you have configured the deployment model as described in Modify the deployment model, install the Bare Metal service components, including Ironic API, Ironic Conductor, Ironic Client, and others.

To install the Bare Metal service components:

1. Install Ironic API:

salt -C 'l@ironic:api and *01*' state.sls ironic.api salt -C 'l@ironic:api' state.sls ironic.api

2. Install Ironic Conductor:

salt -C 'l@ironic:conductor' state.sls ironic.conductor

3. Install Ironic Client:

salt -C 'l@ironic:client and *01*' state.sls ironic.client salt -C 'l@ironic:client' state.sls ironic.client

4. Install software required by Ironic, such as Apache and TFTP server:

salt -C 'l@ironic:conductor' state.sls apache
salt -C 'l@tftpd_hpa:server' state.sls tftpd_hpa

5. Install nova-compute with ironic virt-driver:

salt -C 'l@nova:compute' state.sls nova.compute salt -C 'l@nova:compute' cmd.run 'systemctl restart nova-compute'

- 6. Log in to an OpenStack Controller node.
- 7. Verify that the Ironic services are enabled and running:

salt -C 'l@ironic:client' cmd.run '. /root/keystonercv3; ironic driver-list'

Deploy Manila

Caution!

Manila deprecation notice

In the MCP 2019.2.7 update, the OpenStack Manila component is being considered for deprecation. The corresponding capabilities are still available, although not further enhanced.

Starting with the 2019.2.11 maintenance update, the OpenStack Manila component will no longer be supported by Mirantis. For those existing customers who have the Manila functionality explicitly included in the scope of their contracts, Mirantis will continue to fulfill the corresponding support obligations.

Manila, also known as the OpenStack Shared File Systems service, provides coordinated access to shared or distributed file systems that a compute instance can consume.
Modify the deployment model

Caution!

Manila deprecation notice

In the MCP 2019.2.7 update, the OpenStack Manila component is being considered for deprecation. The corresponding capabilities are still available, although not further enhanced.

Starting with the 2019.2.11 maintenance update, the OpenStack Manila component will no longer be supported by Mirantis. For those existing customers who have the Manila functionality explicitly included in the scope of their contracts, Mirantis will continue to fulfill the corresponding support obligations.

You can enable Manila while generating you deployment metadata model using the Model Designer UI before deploying a new OpenStack environment. You can also deploy Manila on an existing OpenStack environment.

The manila-share service may use different backends. This section provides examples of deployment model modifications for the LVM backend. You may need to tailor these examples depending on the needs of your deployment. Basically, the examples provided in this section describe the following configuration:

- The OpenStack Manila API and Scheduler services run on the OpenStack share nodes.
- The manila-share service and other services per share role may reside on the share or cmp nodes depending on the backend type. The default LVM-based shares reside on the cmp nodes.

To modify the deployment model:

- 1. While generating a deployment metadata model for your new MCP cluster as described in Create a deployment metadata model, select Manila enabled and modify its parameters as required in the Product parameters section of the Model Designer UI.
- 2. If you have already generated a deployment metadata model without the Manila service or to enable this feature on an existing MCP cluster:
 - 1. Open your Reclass model Git project repository on the cluster level.
 - 2. Modify the ./infra/config.yml file:

classes:

- system.reclass.storage.system.openstack share multi
- system.salt.master.formula.pkg.manila
- 3. Modify the ./infra/secrets.yml file:

```
parameters:
    _param:
    ...
    keystone_manila_password_generated: some_password
    mysql_manila_password_generated: some_password
    manila_keepalived_vip_password_generated: some_password
```

4. Modify the ./openstack/compute/init.yml file:

classes:

....

- system.manila.share
- system.manila.share.backend.lvm

```
parameters:
_param:
...
manila lym yoli
```

```
manila_lvm_volume_name: <lvm_volume_name>
manila_lvm_devices: <list_of_lvm_devices>
```

5. Modify the ./openstack/control/init.yml file:

6. Modify the ./openstack/database.yml file:

classes:

...

- system.galera.server.database.manila

7. Modify the ./openstack/init.yml file:

```
parameters:
 param:
  . . .
  manila service host: ${ param:openstack share address}
  keystone manila password: ${ param:keystone manila password generated}
  mysql_manila_password: ${_param:mysql_manila_password_generated}
  openstack share address: <share address>
  openstack share node01 address: <share node01 address>
  openstack_share_node02_address: <share_node02_address>
  openstack_share_node03_address: <share_node03_address>
  openstack share node01 share address: ${ param:openstack share node01 address}
  openstack_share_node02_share_address: ${_param:openstack_share_node02_address}
  openstack_share_node03_share_address: ${_param:openstack_share_node03_address}
  openstack_share_node01_deploy_address: <share_node01_deploy_address>
  openstack_share_node02_deploy_address: <share_node02_deploy_address>
  openstack share node03 deploy address: <share node03 deploy address>
  openstack share hostname: <share hostname>
  openstack_share_node01_hostname: <share_node01_hostname>
  openstack share node02 hostname: <share node02 hostname>
  openstack share node03 hostname: <share node03 hostname>
 linux:
  network:
   host:
    share01:
     address: ${ param:openstack share node01 address}
     names:
      - ${ param:openstack share node01 hostname}
      - ${ param:openstack share node01 hostname}.${ param:cluster domain}
     share02:
      address: ${_param:openstack_share_node02_address}
      names:
      - ${ param:openstack share node02 hostname}
      - ${_param:openstack_share_node02_hostname}.${_param:cluster_domain}
     share03:
      address: ${_param:openstack_share_node03_address}
      names:
      - ${ param:openstack share node03 hostname}
      - ${_param:openstack_share_node03_hostname}.${_param:cluster_domain}
```

8. Modify the ./openstack/proxy.yml file:

```
classes:
...
- system.nginx.server.proxy.openstack.manila
```

9. Modify the ./openstack/share.yml file:

classes:

3. If you plan a separate storage network for Manila, define the manila_share_address parameter on the cluster level of your Reclass model in the file that contains the configuration for the Manila share backend. For example, for the LVM backend, modify the ./openstack/compute/init.yml file:

```
parameters:
_param:
manila_share_address: <ip_address>
```

4. Proceed to Install the Manila components.

Seealso

MCP Reference Architecture: Manila storage networking planning

Install the Manila components

Caution!

Manila deprecation notice

In the MCP 2019.2.7 update, the OpenStack Manila component is being considered for deprecation. The corresponding capabilities are still available, although not further enhanced.

Starting with the 2019.2.11 maintenance update, the OpenStack Manila component will no longer be supported by Mirantis. For those existing customers who have the Manila functionality explicitly included in the scope of their contracts, Mirantis will continue to fulfill the corresponding support obligations.

After you have configured the deployment model as described in Modify the deployment model, install the Manila components that include the manila-api, manila-scheduler, manila-share, manila-data, and other services.

To install the Manila components:

- 1. Log in to the Salt Master node.
- 2. Refresh your Reclass storage data:

salt-call state.sls reclass.storage

3. Install manila-api:

salt -C 'l@manila:api and *01*' state.sls manila.api salt -C 'l@manila:api' state.sls manila.api

4. Install manila-scheduler:

salt -C 'l@manila:scheduler' state.sls manila.scheduler

5. Install manila-share:

salt -C 'l@manila:share' state.sls manila.share

6. Install manila-data:

salt -C 'I@manila:data' state.sls manila.data

7. Install the Manila client:

salt -C 'l@manila:client' state.sls manila.client

- 8. Log in to any OpenStack controller node.
- 9. Verify that the Manila services are enabled and running:

salt 'cfg01*' cmd.run 'source keystonercv3; manila list'
salt 'cfg01*' cmd.run 'source keystonercv3; manila service-list'

Secure memcached for the OpenStack services

This section provides the instruction on how to enable the memcached protection in the OpenStack Pike deployments.

The OpenStack services that support the memcached protection include Aodh, Barbican, Cinder, Glance, Gnocchi, Heat, Ironic, Neutron, Nova, and Panko.

When using Memcached, tokens and authentication responses are stored in the cache as raw data. If the cache is compromised, tokens and authentication responses become readable. To mitigate this risk, MCP uses the auth_token middleware that provides for the authentication and encryption of the token data stored in the cache by means of the following configuration parameters:

memcache_security_strategy

Indicates whether the token data should be authenticated or authenticated and encrypted. Acceptable values include:

- MAC to authenticate (with HMAC) the token data in cache
- ENCRYPT to encrypt and authenticate the token data in cache

If the value is not set or empty, auth token raises an exception on initialization.

memcache_secret_key

Mandatory if memcache_security_strategy is defined. Used for key derivation. If memcache_security_strategy is defined and memcache_secret_key is not set, auth_token raises an exception on initialization.

MCP OpenStack supports the memcached protection since the Pike release. By default, this functionality is disabled in the Pike deployments. For Queens and newer releases, the memcached protection is enabled by default with the ENCRYPT security strategy.

To enable the memcached protection:

- 1. Log in to the Salt Master node.
- 2. Update your Reclass metadata model.
- 3. Verify the pillars. For example, for nova:controller:

salt -C 'l@nova:controller' pillar.get nova:controller:cache:security

Example of system response:

Output ctl02.node.local:	:		
enabled: False secret_key: strategy: ENCRYPT			
ctl03.node.local			
enabled: False secret_key: strategy: ENCRYPT ctl01.node.local:	:		
enabled: False secret_key: strategy: ENCRYPT End output			

- 4. Select from the following options:
 - Enable the memcache security and specify the secret keys globally by modifying the cluster level of your deployment model:
 - 1. In the <cluster_name>/openstack/init.yml file, enable the cache security, set the security strategy, and define the secret keys for the required OpenStack services. For example:

```
parameters:
    _param:
    openstack_memcache_security_enabled: True
    openstack_memcache_security_strategy: ENCRYPT
    nova_memcache_secret_key: <SECRET_KEY>
    neutron_memcache_secret_key: <SECRET_KEY>
...
```

2. Refresh pillars:

salt '*' saltutil.refresh_pillar

3. Verify pillars for the OpenStack services. For example, for the Nova controller:

salt -C 'l@nova:controller' pillar.get nova:controller:cache:security

Example of system response:

---Output--ctl02.node.local: ----enabled: True secret_key: ez6D6unod2PB4Aqp strategy: ENCRYPT ctl03.node.local: ----enabled: True secret key: ez6D6unod2PB4Aqp strategy: ENCRYPT ctl01.node.local: ----enabled: True secret_key: ez6D6unod2PB4Aqp strategy: **ENCRYPT** ---End Output---

- 4. Apply the changes for all required OpenStack services by running the appropriate service states listed in the table below.
- Define the memcache security parameters through the pillars in a granular way, which allows for particular services configuration if required.

Memcache protection configuration for the OpenStack services

Aodh	aodh: server: cache: security: enabled: True secret_key: secret-key strategy: ENCRYPT	salt -C 'l@aodh:server' state.sls aodh
Barbic an	barbican: server: cache: security: enabled: True secret_key: secret-key strategy: ENCRYPT	salt -C 'l@barbican:server' state.sls barbican.server
Cinder	cinder: controller: cache: security: enabled: True secret_key: secret-key strategy: ENCRYPT cinder: volume: cache: security: enabled: True secret_key: secret-key strategy: ENCRYPT	salt -C 'l@cinder:controller or l@cinder:volume' state.sls cinder
Glance	glance: server: cache: security: enabled: True secret_key: secret-key strategy: ENCRYPT	salt -C 'l@glance:server' state.sls glance.server

Gnocc hi	gnocchi: server: cache: security: enabled: True secret_key: secret-key strategy: ENCRYPT	salt -C 'l@gnocchi:server' state.sls gnocchi.server
Heat	heat: server: cache: security: enabled: True secret_key: secret-key strategy: ENCRYPT	salt -C 'l@heat:server' state.sls heat.server
Ironic	<pre>ironic: api: cache: security: enabled: True secret_key: secret-key strategy: ENCRYPT conductor: cache: security: enabled: True secret_key: secret-key strategy: ENCRYPT</pre>	salt -C 'l@ironic:api' state.sls ironic.api salt -C 'l@ironic:conductor' state.sls ironic.conductor
Neutro n	neutron: server: cache: security: enabled: True secret_key: secret-key strategy: ENCRYPT	salt -C 'I@neutron:server' state.sls neutron.server

Nova	nova: controller: cache: security: enabled: True secret_key: secret-key strategy: ENCRYPT nova: compute: cache: security: enabled: True secret_key: secret-key	salt -C 'l@nova:controller or l@nova:compute' state.sis nova
	strategy: ENCRYPT	
Panko	panko: server: cache: security: enabled: True secret_key: secret-key strategy: ENCRYPT	salt -C 'l@panko:server' state.sls panko.server

Deploy a Ceph cluster

Ceph is a storage backend for cloud environments. This section guides you through the manual deployment of a Ceph cluster. To deploy a Ceph cluster with nodes in different L3 compartments, first perform the prerequisite steps as described in Prerequisites for a Ceph cluster distributed over L3 domains. Otherwise, proceed with Deploy a Ceph cluster.

Prerequisites for a Ceph cluster distributed over L3 domains

Note

This feature is available starting from the MCP 2019.2.5 maintenance update. Before enabling the feature, follow the steps described in Apply maintenance updates.

Before deploying a Ceph cluster with nodes in different L3 compartments, consider the following prerequisite steps. Otherwise, proceed to Deploy a Ceph cluster right away.

This document uses the terms failure domain and L3 compartment. Failure domains are a logical representation of a physical cluster structure. For example, one L3 segment spans two racks and another one spans a single rack. In this case, failure domains reside along the rack boundary, instead of the L3 segmentation.

1. Verify your networking configuration:

Note

Networking verification may vary depending on the hardware used for the deployment. Use the following steps as a reference only.

- 1. To ensure the best level of high availability, verify that the Ceph Monitor and RADOS Gateway nodes are distributed as evenly as possible over the failure domains.
- 2. Verify that the same number and weight of OSD nodes and OSDs are defined in each L3 compartment for the best data distribution:
 - 1. In classes/cluster/cluster_name/ceph/osd.yml, verify the Ceph OSDs weight. For example:

2. In classes/cluster/cluster_name/infra/config/nodes.yml, verify the number of OSDs.

3. Verify the connection between the nodes from different compartments through public or cluster VLANs. To use different subnets for the Ceph nodes in different compartments, specify all subnets in classes/cluster/cluster_name/ceph/common.yml. For example:

```
parameters:

ceph:

common:

public_network: 10.10.0.0/24, 10.10.1.0/24

cluster_network: 10.11.0.0/24, 10.11.1.0/24
```

- 2. Prepare the CRUSHMAP:
 - 1. To ensure at least one data replica in every failure domain, group the Ceph OSD nodes from each compartment by defining the ceph_crush_parent parameter in classes/cluster/cluster_name/infra/config/nodes.yml for each Ceph OSD node. For example, for three Ceph OSDs in rack01:

```
ceph osd rack01:
 name: ${ param:ceph osd rack01 hostname}<<count>>
 domain: ${ param:cluster domain}
 classes:
  - cluster.${ param:cluster name}.ceph.osd
 repeat:
  count: 3
 ip ranges:
   single address: 10.11.11.1-10.11.20.255
   backend address: 10.12.11.1-10.12.20.255
   ceph public address: 10.13.11.1-10.13.20.255
  start: 1
  digits: 0
  params:
   single address:
    value: <<single address>>
   backend address:
    value: <<backend address>>
   ceph public address:
    value: <<ceph public address>>
 params:
  salt_master_host: ${ param:reclass config master}
  ceph_crush_parent: rack01
  linux_system_codename: xenial
```

 In /classes/cluster/cluster_name/ceph/setup.yml, create a new CRUSHMAP and define the failure domains. For example, to have three copies of each object distributed over rack01, rack02, rack03:

```
parameters:
ceph:
setup:
crush:
enforce: false # uncomment this line and set it to true only if
```


Once done, proceed to Deploy a Ceph cluster.

Deploy a Ceph cluster

This section guides you through the manual deployment of a Ceph cluster. If you are deploying a Ceph cluster distributed over L3 domains, verify that you have performed the steps described in Prerequisites for a Ceph cluster distributed over L3 domains.

Warning

Converged storage is not supported.

Note

Prior to deploying a Ceph cluster:

- 1. Verify that you have selected Ceph enabled while generating a deployment model as described in Define the deployment model.
- 2. If you require Tenant Telemetry, verify that you have set the gnocchi_aggregation_storage option to Ceph while generating the deployment model.
- 3. Verify that OpenStack services, such as Cinder, Glance, and Nova are up and running.
- 4. Verify and, if required, adjust the Ceph setup for disks in the classes/cluster/<CLUSTER_NAME>/ceph/osd.yml file.

To deploy a Ceph cluster:

- 1. Log in to the Salt Master node.
- 2. Update modules and states on all Minions:

salt '*' saltutil.sync_all

3. Run basic states on all Ceph nodes:

salt "*" state.sls linux,openssh,salt,ntp,rsyslog

4. Generate admin and mon keyrings:

```
salt -C 'l@ceph:mon:keyring:mon or l@ceph:common:keyring:admin' state.sls ceph.mon
salt -C 'l@ceph:mon' saltutil.sync_grains
salt -C 'l@ceph:mon:keyring:mon or l@ceph:common:keyring:admin' mine.update
```

- 5. Deploy Ceph mon nodes:
 - If your Ceph version is older than Luminous:

salt -C 'l@ceph:mon' state.sls ceph.mon

• If your Ceph version is Luminous or newer:

salt -C 'l@ceph:mon' state.sls ceph.mon
salt -C 'l@ceph:mgr' state.sls ceph.mgr

6. (Optional) To modify the Ceph CRUSH map:

- 1. Uncomment the example pillar in the classes/cluster/<CLUSTER_NAME>/ceph/setup.yml file and modify it as required.
- 2. Verify the ceph_crush_parent parameters in the classes/cluster/<CLUSTER_NAME>/infra.config.yml file and modify them if required.
- 3. If you have modified the ceph_crush_parent parameters, also update the grains:

salt -C 'l@salt:master' state.sls reclass.storage salt '*' saltutil.refresh_pillar salt -C 'l@ceph:common' state.sls salt.minion.grains salt -C 'l@ceph:common' mine.flush salt -C 'l@ceph:common' mine.update

- 7. Technical preview Optional. For testing and evaluation purposes, you can enable the ceph-volume tool instead of ceph-disk to deploy the Ceph OSD nodes:
 - 1. In classes/cluster/<cluster_name>/ceph/osd.yml, specify:

```
parameters:

ceph:

osd:

backend:

bluestore:

create_partitions: True

lvm_enabled: True
```

2. Apply the changes:

salt -C 'l@ceph:osd' saltutil.refresh_pillar

8. Deploy Ceph osd nodes:

salt -C 'l@ceph:osd' state.sls ceph.osd salt -C 'l@ceph:osd' saltutil.sync_grains salt -C 'l@ceph:osd' state.sls ceph.osd.custom salt -C 'l@ceph:osd' saltutil.sync_grains salt -C 'l@ceph:osd' mine.update salt -C 'l@ceph:setup' state.sls ceph.setup 9. Deploy RADOS Gateway:

salt -C 'l@ceph:radosgw' saltutil.sync_grains salt -C 'l@ceph:radosgw' state.sls ceph.radosgw

10 Set up the Keystone service and endpoints for Swift or S3:

salt -C 'l@keystone:client' state.sls keystone.client

11 Connect Ceph to your MCP cluster:

```
salt -C 'l@ceph:common and l@glance:server' state.sls ceph.common,ceph.setup.keyring,glance
salt -C 'l@ceph:common and l@glance:server' service.restart glance-api
salt -C 'l@ceph:common and l@glance:server' service.restart glance-glare
salt -C 'l@ceph:common and l@glance:server' service.restart glance-registry
salt -C 'l@ceph:common and l@cinder:controller' state.sls ceph.common,ceph.setup.keyring,cinder
salt -C 'l@ceph:common and l@nova:compute' state.sls ceph.common,ceph.setup.keyring
salt -C 'l@ceph:common and l@nova:compute' state.sls ceph.common,ceph.setup.keyring
salt -C 'l@ceph:common and l@nova:compute' state.sls nova
```

- 12 If you have deployed StackLight LMA, configure Ceph monitoring:
 - 1. Clean up the /srv/volumes/ceph/etc/ceph directory.
 - 2. Connect Telegraf to Ceph:

salt -C 'l@ceph:common and l@telegraf:remote_agent' state.sls ceph.common

13 If you have deployed Tenant Telemetry, connect Gnocchi to Ceph:

salt -C 'l@ceph:common and l@gnocchi:server' state.sls ceph.common,ceph.setup.keyring salt -C 'l@ceph:common and l@gnocchi:server' saltutil.sync_grains salt -C 'l@ceph:common and l@gnocchi:server:role:primary' state.sls gnocchi.server

salt -C 'l@ceph:common and l@gnocchi:server' state.sls gnocchi.server

- 14 (Optional) If you have modified the CRUSH map as described in the step 6:
 - 1. View the CRUSH map generated in the /etc/ceph/crushmap file and modify it as required. Before applying the CRUSH map, verify that the settings are correct.
 - 2. Apply the following state:

salt -C 'l@ceph:setup:crush' state.sls ceph.setup.crush

3. Once the CRUSH map is set up correctly, add the following snippet to the classes/cluster/<CLUSTER_NAME>/ceph/osd.yml file to make the settings persist even after a Ceph OSD reboots:

ceph: osd: crush_update: false

4. Apply the following state:

salt -C 'l@ceph:osd' state.sls ceph.osd

Once done, if your Ceph version is Luminous or newer, you can access the Ceph dashboard through http://<active_mgr_node_IP>:7000/. Run ceph -s on a cmn node to obtain the active mgr node.

Deploy Xtrabackup for MySQL

MCP uses the Xtrabackup utility to back up MySQL databases.

To deploy Xtrabackup for MySQL:

1. Apply the xtrabackup server state:

salt -C 'l@xtrabackup:server' state.sls xtrabackup

2. Apply the xtrabackup client state:

salt -C 'l@xtrabackup:client' state.sls openssh.client,xtrabackup

Post-deployment procedures

After your OpenStack environment deployment has been successfully completed, perform a number of steps to verify all the components are working and your OpenStack installation is stable and performs correctly at scale.

Run non-destructive Rally tests

Rally is a benchmarking tool that enables you to test the performance and stability of your OpenStack environment at scale.

The Tempest and Rally tests are integrated into the MCP CI/CD pipeline and can be managed through the DriveTrain web UI.

For debugging purposes, you can manually start Rally tests from the deployed Benchmark Rally Server (bmk01) with the installed Rally benchmark service or run the appropriate Docker container.

To manually run a Rally test on a deployed environment:

- 1. Validate the input parameters of the Rally scenarios in the task_arguments.yaml file.
- 2. Create the Cirros image:

Note

If you need to run Glance scenarios with an image that is stored locally, download it from https://download.cirros-cloud.net/0.3.5/cirros-0.3.5-i386-disk.img:

wget https://download.cirros-cloud.net/0.3.5/cirros-0.3.5-i386-disk.img

openstack image create --disk-format qcow2 --container-format bare --public --file ./cirros-0.3.5-i386-disk.img cirros

3. Run the Rally scenarios:

rally task start <name_of_file_with_scenarios> --task-args-file task_arguments.yaml

or

rally task start combined_scenario.yaml --task-args-file task_arguments.yaml

Modify Salt Master password expiration

Due to CIS 5.4.1.1, the Salt Master node password expiration is set to maximum 90 days with a subsequent access lock if the password is not updated. As a result, if the user does not update the password, even if PasswordAuthentication is disabled, access to the Salt Master node may be lost. Perform the following steps to either disable CIS 5.4.1.1 or update the time stamp of the last password change.

To modify the Salt Master node password expiration:

- For MCP versions before the 2019.2.6 maintenance update, disable CIS 5.4.1.1:
 - 1. Log in to the Salt Master node.
 - 2. Choose from the following options:
 - Disable CIS 5.4.1.1 on all nodes for all users:

salt '*' cmd.run "getent passwd|awk -F':' '{print \\$1}'|xargs -I{} chage -M 99999 -m 7 {}"

• Disable CIS 5.4.1.1 for a particular user:

salt '*' cmd.run "chage -M 99999 -m 7 <account>"

3. Run chage -l <account> to verify that Password expires is set to never and Maximum number of days between password change is set to 99999. For example:

chage -l <account></account>		
Last password change	: Jan 29, 2020	
Password expires	: never	
Password inactive	: never	
Account expires	: never	
Minimum number of days be	tween password change : 7	
Maximum number of days between password change : 99999		
Number of days of warning b	pefore password expires : 7	

- For MCP versions starting from the 2019.2.6 maintenance update, update the time stamp of the last password change using the helper function. The helper does not update the password itself. Update the time stamp using the helper function every 30 days or set a cron job to update the time stamp automatically.
 - 1. Log in to the Salt Master node.
 - 2. Choose from the following options:
 - Update the time stamp of the last password change for all users:

salt '*' sharedlib.call cis.fix last password change

• Update the time stamp of the last password change for particular users:

salt '*' sharedlib.call cis.fix_last_password_change <account1> [<account2>]

3. Run chage -l <account> to verify that Last password change is set to the current date and Password expires is set to the date 90 days after the current one. For example:

chage -l <account></account>		
Last password change	: Jan 29, 2020	
Password expires	: Apr 28, 2020	
Password inactive	: never	
Account expires	: never	
Minimum number of day	/s between password change	: 7
Maximum number of da	ys between password change	: 90
Number of days of warn	ing before password expires	: 7

- 4. Optional. Set a cron job to automatically update the time stamp every 30 days:
 - 1. Run crontab -e.
 - 2. Schedule the cron job:

0 1 1 * * salt '*' sharedlib.call cis.fix_last_password_change <account1>

Troubleshoot

This section provides solutions to the issues that may occur while installing Mirantis Cloud Platform.

Troubleshooting of an MCP installation usually requires the salt command usage. The following options may be helpful if you run into an error:

• -I LOG_LEVEL, --log-level=LOG_LEVEL

Console logging log level. One of all, garbage, trace, debug, info, warning, error, or quiet. Default is warning

• --state-output=STATE_OUTPUT

Override the configured STATE_OUTPUT value for minion output. One of full, terse, mixed, changes, or filter. Default is full.

To synchronize all of the dynamic modules from the file server for a specific environment, use the saltutil.sync_all module. For example:

```
salt '*' saltutil.sync_all
```

Troubleshooting the server provisioning

This section includes the workarounds for the following issues:

Virtual machine node stops responding

If one of the control plane VM nodes stops responding, you may need to redeploy it.

Workaround:

1. From the physical node where the target VM is located, get a list of the VM domain IDs and VM names:

virsh list

2. Destroy the target VM (ungraceful powering off of the VM):

virsh destroy DOMAIN_ID

3. Undefine the VM (removes the VM configuration from KVM):

virsh undefine VM_NAME

4. Verify that your physical KVM node has the correct salt-common and salt-minion version:

apt-cache policy salt-common apt-cache policy salt-minion

Note

If the salt-common and salt-minion versions are not 2015.8, proceed with Install the correct versions of salt-common and salt-minion.

5. Redeploy the VM from the physical node meant to host the VM:

salt-call state.sls salt.control

6. Verify the newly deployed VM is listed in the Salt keys:

salt-key

7. Deploy the Salt states to the node:

salt 'OST_NAME*' state.sls linux,ntp,openssh,salt

8. Deploy service states to the node:

salt 'HOST_NAME*' state.sls keepalived,haproxy,SPECIFIC_SERVICES

Note

You may need to log in to the node itself and run the states locally for higher success rates.

Troubleshoot Ceph

This section includes workarounds for the Ceph-related issues that may occur during the deployment of a Ceph cluster.

Troubleshoot an encrypted Ceph OSD

During the deployment of a Ceph cluster, an encrypted OSD may fail to be prepared or activated and thus fail to join the Ceph cluster. In such case, remove all the disk partitions as described below.

Workaround:

1. From the Ceph OSD node where the failed encrypted OSD disk resides, erase its partition table:

dd **if**=/dev/zero of=/dev/<<ADD>> bs=512 count=1 conv=notrunc

2. Reboot the server:

reboot

3. Run the following command twice to create a partition table for the disk and to remove the disk data:

ceph-disk zap /dev/<<ADD>>;

4. Remove all disk signatures using wipefs:

wipefs --all --force /dev/<<ADD>>*;

Deploy a Kubernetes cluster manually

Caution!

Kubernetes support termination notice

Starting with the MCP 2019.2.5 update, the Kubernetes component is no longer supported as a part of the MCP product. This implies that Kubernetes is not tested and not shipped as an MCP component. Although the Kubernetes Salt formula is available in the community driven SaltStack formulas ecosystem, Mirantis takes no responsibility for its maintenance.

Customers looking for a Kubernetes distribution and Kubernetes lifecycle management tools are encouraged to evaluate the Mirantis Kubernetes-as-a-Service (KaaS) and Docker Enterprise products.

Kubernetes is the system for containerized applications automated deployment, scaling, and management. This section guides you through the manual deployment of a Kubernetes cluster on bare metal with Calico plugin set for Kubernetes networking. For an easier deployment process, use the automated DriveTrain deployment procedure described in Deploy a Kubernetes cluster.

Caution!

OpenContrail 4.x for Kubernetes 1.12 or later is not supported.

Prerequisites

The following are the prerequisite steps for a manual MCP Kubernetes deployment:

- 1. Prepare six nodes:
 - 1 x configuration node a host for the Salt Master node. Can be a virtual machine.
 - 3 x Kubernetes Master nodes (ctl) hosts for the Kubernetes control plane components and etcd.
 - 2 x Kubernetes Nodes (cmp) hosts for the Kubernetes pods, groups of containers that are deployed together on the same host.
- 2. For an easier deployment and testing, the following usage of three NICs is recommended:
 - 1 x NIC as a PXE/DHCP/Salt network (PXE and DHCP is are third-party services in a data center, unmanaged by SaltStack)
 - 2 x NICs as bond active-passive or active-active with two 10 Gbit slave interfaces
- 3. Create a project repository.
- 4. Create a deployment metadata model.
- 5. Optional. Add additional options to the deployment model as required:
 - Enable horizontal pod autoscaling
 - Enable Virtlet
 - Enable the MetalLB support
 - Enable an external Ceph RBD storage
 - Enable Helm support
- 6. If you have swap enabled on the ctl and cmp nodes, modify the deployment model as described in Add swap configuration to a Kubernetes deployment model.
- 7. Define interfaces.
- 8. Deploy the Salt Master node.

Now, proceed to Deploy a Kubernetes cluster.

Salt formulas used in the Kubernetes cluster deployment

MCP Kubernetes cluster standard deployment uses the following Salt formulas to deploy and configure a Kubernetes cluster:

salt-formula-kubernetes

Handles Kubernetes hyperkube binaries, CNI plugins, Calico manifests, containerd

salt-formula-etcd

Provisions etcd clusters

salt-formula-bird

Customizes BIRD templates used by Calico to provide advanced networking scenarios for route distribution through BGP

Add swap configuration to a Kubernetes deployment model

If you have swap enabled on the ctl and cmp nodes, configure your Kubernetes model to make kubelet work correctly with swapping.

To add swap configuration to a Kubernetes deployment model:

- 1. Open your Git project repository.
- 2. In classes/cluster/<cluster-name>/kubernetes/control.yml, add the following snippet:

```
marameters:
kubernetes:
master:
kubelet:
fail_on_swap: False
```

3. In classes/cluster/<cluster-name>/kubernetes/compute.yml, add the following snippet:

```
parameters:
kubernetes:
pool:
kubelet:
fail_on_swap: False
```

Now, proceed with further MCP Kubernetes cluster configuration as required.

Define interfaces

Since Cookiecutter is simply a tool to generate projects from templates, it cannot handle all networking use-cases. Your cluster may include a single interface, two interfaces in bond, bond and management interfaces, and so on.

This section explains how to handle 3 interfaces configuration:

- eth0 interface for pxe
- eth1 and eth2 as bond0 slave interfaces

To configure network interfaces:

- 1. Open your MCP Git project repository.
- 2. Open the {{ cookiecutter.cluster_name }}/kubernetes/init.yml file for editing.
- 3. Add the following example definition to this file:

```
parameters:
. . .
_param:
 deploy nic: eth0
 primary first nic: eth1
 primary_second_nic: eth2
linux:
 ...
 network:
 . . .
  interface:
    deploy nic:
     name: ${ param:deploy nic}
     enabled: true
     type: eth
     proto: static
     address: ${_param:deploy_address}
     netmask: 255.255.255.0
    primary first nic:
     name: ${ param:primary first nic}
     enabled: true
     type: slave
     master: bond0
     mtu: 9000
     pre up cmds:
     - /sbin/ethtool --offload eth6 rx off tx off tso off gro off
    primary second nic:
     name: ${_param:primary_second_nic}
     type: slave
     master: bond0
     mtu: 9000
     pre up cmds:
```

```
- /sbin/ethtool --offload eth7 rx off tx off tso off gro off
bond0:
 enabled: true
 proto: static
 type: bond
 use_interfaces:
 - ${_param:primary_first_nic}
 - ${_param:primary_second_nic}
 slaves: ${_param:primary_first_nic} ${_param:primary_second_nic}
 mode: active-backup
 mtu: 9000
 address: ${_param:single_address}
 netmask: 255.255.255.0
 name_servers:
 - {{ cookiecutter.dns_server01 }}
 - {{ cookiecutter.dns_server02 }}
```

Deploy a Kubernetes cluster

After you complete the prerequisite steps described in Prerequisites, deploy your MCP Kubernetes cluster manually using the procedure below.

To deploy the Kubernetes cluster:

- 1. Log in to the Salt Master node.
- 2. Update modules and states on all Minions:

salt '*' saltutil.sync_all

3. If you use autoregistration for the compute nodes, register all discovered compute nodes. Run the following command on every compute node:

Modify the parameters passed with the command above as required. The table below provides the description of the parameters required for a compute node registration.

Parameter	Description
config_host	IP of the Salt Master node
os_codename	Operating system code name. Check the system response of lsb_release -c for it
node_deploy_netwo rk_ip	Minion deploy network IP address
node_deploy_netwo rk_iface	Minion deploy network interface
node_control_netwo rk_ip	Minion control network IP address
----------------------------------	---
node_control_netwo rk_iface	Minion control network interface
node_sriov_ip	Minion SR-IOV IP address
node_sriov_iface	Minion SR-IOV interface
node_tenant_networ k_ip	Minion tenant network IP address
node_tenant_networ k_iface	Minion tenant network interface
node_external_netw ork_ip	Minion external network IP address
node_external_netw ork_iface	Minion external network interface
node_baremetal_net work_ip	Minion baremetal network IP address
node_baremetal_net work_iface	Minion baremetal network interface
node_domain	Domain of a minion. Check the system response of hostname -d for it
cluster_name	Value of the cluster_name variable specified in the Reclass model. See Basic deployment parameters for details
node_hostname	Short hostname without a domain part. Check the system response of hostname -s for it

- 4. Log in to the Salt Master node.
- 5. Perform Linux system configuration to synchronize repositories and execute outstanding system maintenance tasks:

salt '*' state.sls linux.system

- 6. Install the Kubernetes control plane:
 - 1. Bootstrap the Kubernetes Master nodes:

```
salt -C 'l@kubernetes:master' state.sls linux
salt -C 'l@kubernetes:master' state.sls salt.minion
salt -C 'l@kubernetes:master' state.sls openssh,ntp
```

2. Create and distribute SSL certificates for services using the salt state and install etcd with the SSL support:

salt -C 'l@kubernetes:master' state.sls salt.minion.cert,etcd.server.service salt -C 'l@etcd:server' cmd.run '. /var/lib/etcd/configenv && etcdctl cluster-health'

3. Install Keepalived:

salt -C 'l@keepalived:cluster' state.sls keepalived -b 1

4. Install HAProxy:

salt -C 'l@haproxy:proxy' state.sls haproxy
salt -C 'l@haproxy:proxy' service.status haproxy

5. Install Kubernetes:

salt -C 'l@kubernetes:master' state.sls kubernetes.master.kube-addons salt -C 'l@kubernetes:master' state.sls kubernetes.pool

- 6. For the Calico setup:
 - 1. Verify the Calico nodes status:

salt -C 'l@kubernetes:pool' cmd.run "calicoctl node status"

2. Set up NAT for Calico:

salt -C 'l@kubernetes:master' state.sls etcd.server.setup

7. Apply the following state to simplify namespaces creation:

salt -C 'l@kubernetes:master and *01*' state.sls kubernetes.master \
exclude=kubernetes.master.setup

8. Apply the following state:

salt -C 'l@kubernetes:master' state.sls kubernetes exclude=kubernetes.master.setup

9. Run the Kubernetes Master nodes setup:

salt -C 'l@kubernetes:master' state.sls kubernetes.master.setup

10 Restart kubelet:

salt -C 'l@kubernetes:master' service.restart kubelet

7. Log in to any Kubernetes Master node and verify that all nodes have been registered successfully:

kubectl get nodes

- 8. Deploy the Kubernetes Nodes:
 - 1. Log in to the Salt Master node.
 - 2. Bootstrap all compute nodes:

salt -C 'l@kubernetes:pool and not l@kubernetes:master' state.sls linux salt -C 'l@kubernetes:pool and not l@kubernetes:master' state.sls salt.minion salt -C 'l@kubernetes:pool and not l@kubernetes:master' state.sls openssh,ntp

3. Create and distribute SSL certificates for services and install etcd with the SSL support:

salt -C 'l@kubernetes:pool and not l@kubernetes:master' state.sls salt.minion.cert,etcd.server.service salt -C 'l@etcd:server' cmd.run '. /var/lib/etcd/configenv && etcdctl cluster-health'

4. Install Kubernetes:

salt -C 'l@kubernetes:pool and not l@kubernetes:master' state.sls kubernetes.pool

5. Restart kubelet:

salt -C 'l@kubernetes:pool and not l@kubernetes:master' service.restart kubelet

After you deploy Kubernetes, deploy StackLight LMA to your cluster as described in Deploy StackLight LMA.

Enable horizontal pod autoscaling

Using MCP, you can adjust the number of pod replicas without using an external orchestrator by enabling the horizontal pod autoscaling feature in your MCP Kubernetes deployment. The feature is based on observed CPU and/or memory utilization and can be enabled using the metrics-server add-on.

To enable horizontal pod autoscaling:

- 1. While generating a deployment metadata model for your new MCP Kubernetes cluster as described in Create a deployment metadata model, select the Kubernetes metrics server enabled option in the Kubernetes Product parameters section of the Model Designer UI.
- 2. If you have already generated a deployment metadata model without the metrics-server parameter or to enable this feature on an existing Kubernetes cluster:
 - 1. Open your Reclass model Git project repository on the cluster level.
 - 2. In /kubernetes/control.yml, add the metrics-server parameters:

parameters: kubernetes: common: addons:		
 metrics-server: enabled: true		

- 3. Select from the following options:
 - If you are performing an initial deployment of your cluster, proceed with further configuration as required. Pod autoscaling will be enabled during your Kubernetes cluster deployment.
 - If you are making changes to an existing cluster:
 - 1. Log in to the Salt Master node.
 - 2. Refresh your Reclass storage data:

salt-call state.sls reclass.storage

3. Apply the kube-addons state:

salt -C 'l@kubernetes:master' state.sls kubernetes.master.kube-addons

4. On a running Kubernetes cluster, verify that autoscaling works successfully using the Official Kubernetes documentation.

Enable Virtlet

You can enable Kubernetes to run virtual machines using Virtlet. Virtlet enables you to run unmodified QEMU/KVM virtual machines that do not include an additional containerd layer as in similar solutions in Kubernetes.

Virtlet requires the --feature-gates=MountPropagation=true feature gate to be enabled in the Kubernetes API server and on all kubelet instances. This feature is enabled by default in MCP. Using this feature, Virtlet can create or delete network namespaces assigned to VM pods.

Caution!

Virtlet with OpenContrail is available as technical preview. Use such configuration for testing and evaluation purposes only.

Deploy Virtlet

You can deploy Virtlet on either new or existing MCP cluster using the procedure below. By default, Virtlet is deployed on all Kubernetes Nodes (cmp).

To deploy Virtlet on a new MCP cluster:

- 1. When generating a deployment metadata model using the ModelDesigner UI, select the Virtlet enabled check box in the Kubernetes Product parameters section.
- 2. Open your Git project repository.
- 3. In classes/cluster/<cluster-name>/kubernetes/init.yml, verify that Virtlet is enabled:

```
parameters:
_param:
kubernetes_virtlet_enabled: True
```

4. Optional. In classes/cluster/<cluster-name>/kubernetes/compute.yml, modify the kubernetes:common:addons:virtlet: parameters as required to define the Virtlet namespace and image path as well as the number of compute nodes on which you want to enable Virtlet. For example:

parameters: kubernetes: common: addons: virtlet: enabled: true namespace: kube-system image: mirantis/virtlet:latest

5. If your networking system is OpenContrail, add the following snippet to classes/cluster/<cluster-name>/opencontrail/compute.yml:

kubernetes: pool: network: hash: 77169cdadb80a5e33e9d9fe093ed0d99

Proceed with further MCP cluster configuration. Virtlet will be automatically deployed during the Kubernetes cluster deployment.

To deploy Virtlet on an existing MCP cluster:

- 1. Open your Git project repository.
- 2. In classes/cluster/<cluster-name>/kubernetes/compute.yml, add the following snippet:

parameters: kubernetes: common: addons: virtlet: enabled: true namespace: kube-system image: mirantis/virtlet:latest

Modify the kubernetes:common:addons:virtlet: parameters as required to define the Virtlet namespace and image path as well as the number of compute nodes on which you want to enable Virtlet.

3. If your networking system is OpenContrail, add the following snippet to classes/cluster/<cluster-name>/opencontrail/compute.yml:

```
kubernetes:
pool:
network:
hash: 77169cdadb80a5e33e9d9fe093ed0d99
```

- 4. Commit and push the changes to the project Git repository.
- 5. Log in to the Salt Master node.
- 6. Update your Salt formulas and the system level of your repository:
 - 1. Change the directory to /srv/salt/reclass.
 - 2. Run the git pull origin master command.
 - 3. Run the salt-call state.sls salt.master command.
 - 4. Run the salt-call state.sls reclass command.
- 7. Apply the following states:

salt -C 'l@kubernetes:pool and not l@kubernetes:master' state.sls kubernetes.pool salt -C 'l@kubernetes:master' state.sls kubernetes.master.kube-addons salt -C 'l@kubernetes:master' state.sls kubernetes.master.setup

Seealso

Verify Virtlet after deployment

Verify Virtlet after deployment

After you enable Virtlet as described in Deploy Virtlet, proceed with the verification procedure described in this section.

To verify Virtlet after deployment:

- 1. Verify a basic pod startup:
 - 1. Start a sample VM:

kubectl create -f https://raw.githubusercontent.com/Mirantis/virtlet/v1.4.4/examples/cirros-vm.yaml kubectl get pods --all-namespaces -o wide -w

2. Connect to the VM console:

kubectl attach -it cirros-vm

If you do not see a command prompt, press Enter.

Example of system response:

```
login as 'cirros' user. default password: 'gosubsgo'. use 'sudo' for root.
cirros-vm login: cirros
Password:
$
```

To quit the console, use the ^] key combination.

2. Verify SSH access to the VM pod:

1. Download the vmssh.sh script with the test SSH key:

wget https://raw.githubusercontent.com/Mirantis/virtlet/v1.4.4/examples/{vmssh.sh,vmkey}
chmod +x vmssh.sh
chmod 600 vmkey

Note

The vmssh.sh script requires kubectl to access a cluster.

2. Access the VM pod using the vmssh.sh script:

./vmssh.sh cirros@cirros-vm

- 3. Verify whether the VM can access the Kubernetes cluster services:
 - 1. Verify the DNS resolution of the cluster services:

nslookup kubernetes.default.svc.cluster.local

2. Verify the service connectivity:

curl -k https://kubernetes.default.svc.cluster.local

Note

The above command will raise an authentication error. Ignore this error.

3. Verify Internet access from the VM. For example:

curl -k https://google.com ping -c 1 8.8.8.8

Enable the MetalLB support

MetalLB is a Kubernetes add-on that provides a network load balancer for bare metal Kubernetes clusters using standard routing protocols. It provides external IP addresses to the workloads services, for example, NGINX, from the pool of addresses defined in the MetalLB configuration.

To enable MetalLB support on a bare metal Kubernetes cluster:

- 1. While generating a deployment metadata model for your new MCP Kubernetes cluster as described in Create a deployment metadata model, select the Kubernetes metallb enabled option in the Infrastructure parameters section of the Model Designer UI.
- 2. If you have already generated a deployment metadata model without the MetalLB parameter or to enable this feature on an existing Kubernetes cluster:
 - 1. Open your Reclass model Git project repository on the cluster level.
 - 2. In /kubernetes/control.yml, add the MetalLB parameters. For example:

parameters: kubernetes: common: addons:	
 motallbi	
enabled: true	
addresses:	
- 172.16.10.150-172.16.10.180	
- 172.16.10.192/26	

For the addresses parameter, define the required pool of IP addresses.

- 3. Select from the following options:
 - If you are performing an initial deployment of your cluster, proceed with further configuration as required. MetalLB will be installed during your Kubernetes cluster deployment.
 - If you are making changes to an existing cluster:
 - 1. Log in to the Salt Master node.
 - 2. Refresh your Reclass storage data:

salt-call state.sls reclass.storage

3. Apply the kube-addons state:

salt -C 'l@kubernetes:master' state.sls kubernetes.master.kube-addons

To verify MetalLB after deployment:

1. Log in to any Kubernetes Master node.

2. Verify that the MetalLB pods are created:

kubectl get pods --namespace metallb-system

Example of system response:

NAME	READY	STATU	S REST	ARTS	AGE
controller-79876bc7c	c-8z2bh	1/1	Running	0	20h
speaker-ckn49	1/1	Runni	ng O	21ŀ	ו
speaker-dr65f	1/1	Runnir	ng O	21h	

3. Create two NGINX pods that listen on port 80:

kubectl run my-nginx --image=nginx --replicas=2 --port=80

4. Expose the NGINX pods to the Internet:

kubectl expose deployment my-nginx --port=80 --type=LoadBalancer

5. Verify that NGINX obtained an EXTERNAL-IP address from the pool of addresses defined in the MetalLB configuration.

kubectl get svc

Example of system response:

NAME	TYPE	CLUS	TER-IP	EXTE	RNAL-IP	PORT(S) .	AGE	
kubernetes	ClusterIP	10	.254.0.1	<no< td=""><td>one></td><td>443/TC</td><td>CP</td><td>23h</td><td></td></no<>	one>	443 /TC	CP	23h	
my-nginx	LoadBalan	icer 1	10.254.9	6.233	172.16.2	10.150	80:319	83/TCP	7m

Seealso

- MCP Reference Architecture: MetalLB support
- Enable the NGINX Ingress controller

Enable the NGINX Ingress controller

The NGINX Ingress controller provides load balancing, SSL termination, and name-based virtual hosting. You can enable the NGINX Ingress controller if you use MetalLB in your MCP Kubernetes-based cluster.

To enable the NGINX Ingress controller on a Kubernetes cluster:

- 1. While generating a deployment metadata model for your new MCP Kubernetes cluster as described in Create a deployment metadata model, select the following options in the Infrastructure parameters section of the Model Designer UI:
 - Kubernetes ingressnginx enabled
 - Kubernetes metallb enabled as the Kubernetes network engine
- 2. If you have already generated a deployment metadata model without the NGINX Ingress controller parameter or to enable this feature on an existing Kubernetes cluster:
 - 1. Enable MetalLB as described in Enable the MetalLB support.
 - 2. Open your Reclass model Git project repository on the cluster level.
 - 3. In /kubernetes/control.yml, enable the NGINX Ingress controller:

Note

If required, you can change the default number of replicas for the NGINX Ingress controller by adding the kubernetes_ingressnginx_controller_replicas parameter to /kubernetes/control.yml. The default value is 1.

- 3. Select from the following options:
 - If you are performing an initial deployment of your cluster, proceed with further configuration as required. The NGINX Ingress controller will be installed during your Kubernetes cluster deployment.
 - If you are making changes to an existing cluster:
 - 1. Log in to the Salt Master node.
 - 2. Refresh your Reclass storage data:

salt-call state.sls reclass.storage

3. Apply the kube-addons state:

salt -C 'l@kubernetes:master' state.sls kubernetes.master.kube-addons

Enable an external Ceph RBD storage

You can connect your Kubernetes cluster to an existing external Ceph RADOS Block Device (RBD) storage by enabling the corresponding feature in your new or existing Kubernetes cluster.

To enable an external Ceph RBD storage on a Kubernetes cluster:

- 1. While generating a deployment metadata model for your new MCP Kubernetes cluster as described in Create a deployment metadata model, select the Kubernetes rbd enabled option in the Infrastructure parameters section and define the Kubernetes RBD parameters in the Product parameters section of the Model Designer UI.
- 2. If you have already generated a deployment metadata model without the Ceph RBD storage parameters or to enable this feature on an existing Kubernetes cluster:
 - 1. Open your Reclass model Git project repository on the cluster level.
 - 2. In /kubernetes/control.yml, add the Ceph RBD cluster parameters. For example:

parameters:	
parameters: kubernetes: common: addons: storageclass: rbd: enabled: True default: True provisioner: rbd	
<pre>name: rbd user_id: kubernetes user_key: AQAOoo5bGqtPExAABGSPtThpt5s+iq97KAE+WQ== monitors: cmn01:6789,cmn02:6789,cmn03:6789 pool: kubernetes fstype: ext4</pre>	

- 3. Select from the following options:
 - On a new Kubernetes cluster, proceed to further cluster configuration. The external Ceph RBD storage will be enabled during the Kubernetes cluster deployment. For the deployment details, see: Deploy a Kubernetes cluster.
 - On an existing Kubernetes cluster:
 - 1. Log in to the Salt Master node.
 - 2. Update your Salt formulas and the system level of your repository:
 - 1. Change the directory to /srv/salt/reclass.
 - 2. Run the following commands:

git pull origin master salt-call state.sls salt.master salt-call state.sls reclass

3. Apply the following state:

salt -C 'l@kubernetes:master' state.sls kubernetes.master.kube-addons

Enable Helm support

Warning

This feature is available starting from the MCP 2019.2.3 maintenance update. Before enabling the feature, follow the steps described in Apply maintenance updates.

Helm is a package manager for Kubernetes that allows you to configure, package, and deploy applications on a Kubernetes cluster.

The Helm packaging format is called charts. Charts are packages of the pre-configured Kubernetes resources.

To enable Helm support on a bare metal Kubernetes cluster:

- 1. While generating a deployment metadata model for your new MCP Kubernetes cluster as described in Create a deployment metadata model, select the Kubernetes helm enabled option in the Infrastructure parameters section of the Model Designer UI.
- 2. If you have already generated a deployment metadata model without the Helm parameter or to enable this feature on an existing Kubernetes cluster:
 - 1. Open your Git project repository with the Reclass model on the cluster level.
 - 2. In /kubernetes/common/init.yml, add the Helm parameters:

parameters: kubernetes: common: addons:		
 helm: enabled : true		

- 3. Select from the following options:
 - If you are performing an initial deployment of your cluster, proceed with further configuration as required. Helm will be installed during your Kubernetes cluster deployment.

- If you are making changes to an existing cluster:
 - 1. Log in to the Salt Master node.
 - 2. Refresh your Reclass storage data:

salt-call state.sls reclass.storage

3. Apply the kube-addons state:

salt -C 'l@kubernetes:master' state.sls kubernetes.master.kube-addons

To verify Helm after deployment:

- 1. Log in to any Kubernetes Master node.
- 2. Verify that the Tiller pod is created:

kubectl get pods --namespace kube-system

Example of system response:

NAME	READY	STATUS	RESTA	RTS	AGE
tiller-deploy-79876bc70	dd-7z2bh	1/1 F	Running	0	10h

3. Once the Tiller pod is running, run the following command:

heim	version

The output must contain both the Helm client and server versions:

Example of system response:

 $\label{eq:client: wersion.Version} Client: \ensuremath{\clientsignambda} Client: \ensuremath{\clientsignam$

Seealso

- Helm Git project
- Helm official documentation

Deploy OpenContrail manually

OpenContrail is a component of MCP that provides overlay networking built on top of physical IP-based underlay network for cloud environments. OpenContrail provides more flexibility in terms of network hardware used in cloud environments comparing to other enterprise-class networking solutions.

Caution!

OpenContrail 4.x for Kubernetes 1.12 or later is not supported.

Deploy OpenContrail

This section instructs you on how to manually deploy OpenContrail 4.1 on your OpenStack-based MCP cluster.

Caution!

The OpenContrail versions support status:

- OpenContrail 4.1 is fully supported.
- OpenContrail 4.0 is deprecated and not supported for new deployments since MCP maintenance update 2019.2.4.
- OpenContrail 3.2 is not supported for new deployments.

Deploy OpenContrail 4.1 for OpenStack

This section provides instructions on how to manually deploy OpenContrail 4.1 on your OpenStack-based MCP cluster.

To deploy OpenContrail 4.1 on an OpenStack-based MCP cluster:

- 1. Log in to the Salt Master node.
- 2. Run the following basic states to prepare the OpenContrail nodes:

salt -C 'ntw* or nal*' saltutil.refresh_pillar salt -C 'l@opencontrail:database' saltutil.sync_all salt -C 'l@opencontrail:database' state.sls salt.minion,linux,ntp,openssh

3. Deploy and configure Keepalived and HAProxy:

salt -C 'l@opencontrail:database' state.sls keepalived,haproxy

4. Deploy and configure Docker:

salt -C 'l@opencontrail:database' state.sls docker.host

5. Create configuration files for OpenContrail:

salt -C 'l@opencontrail:database' state.sls opencontrail exclude=opencontrail.client

6. Start the OpenContrail Docker containers:

salt -C 'l@opencontrail:database' state.sls docker.client

7. Verify the status of the OpenContrail service:

salt -C 'l@opencontrail:database' cmd.run 'doctrail all contrail-status'

In the output, the services status should be active or backup.

Note

It may take some time for all services to finish initializing.

8. Configure the OpenContrail resources:

salt -C 'l@opencontrail:client and not l@opencontrail:compute' state.sls opencontrail.client

9. Apply the following states to deploy the OpenContrail vRouters:

salt -C 'cmp*' saltutil.refresh_pillar salt -C 'l@opencontrail:compute' saltutil.sync_all salt -C 'l@opencontrail:compute' state.highstate exclude=opencontrail.client salt -C 'l@opencontrail:compute' cmd.run 'reboot' salt -C 'l@opencontrail:compute' state.sls opencontrail.client

10 After you deploy an OpenContrail-based MCP cluster:

- 1. Navigate to the OpenContrail web UI as described in MCP Operations Guide: Access the OpenContrail web UI.
- 2. Verify that Monitor > Infrastructure > Dashboard displays actual information about all OpenContrail nodes configured and deployed on your MCP cluster.

Seealso

MCP 2019.2.3 Maintenance Update: Known issues

Seealso

OpenContrail limitations

Seealso

- OpenContrail limitations
- Troubleshoot OpenContrail
- OpenContrail operations
- Plan OpenContrail networking

Deploy compute nodes

Provisioning and deploying of the OpenStack or Kubernetes compute nodes (cmp00X) is relatively straightforward and should be performed after the bare-metal provisioning through MAAS is done. You can run all states at once. Though, this has to be done multiple times with a reboot involved for changes to network configuration to take effect. The ordering of dependencies is not yet orchestrated.

To deploy a compute node:

- 1. Log in to the Salt Master node.
- 2. Verify that the new machines have connectivity with the Salt Master node:

salt 'cmp*' test.ping

3. Refresh the deployed pillar data:

salt 'cfg*' state.sls reclass.storage

4. Apply the Salt data sync and base states for Linux, NTP, OpenSSH, and Salt for the target nodes:

salt 'cmp*' saltutil.sync_all
salt 'cmp*' saltutil.refresh_pillar
salt 'cmp*' state.sls linux,ntp,openssh,salt

Note

Refreshing the pillar data must be done every time you apply the reclass state on the Salt Master node.

5. Apply all states for the target nodes:

salt 'cmp*' state.highstate

Note

You may need to apply the states multiple times to get a successful deployment. If after two runs you still have errors, reboot the target nodes and apply the states again.

Note

You may have an error stating that iptables is down. Ignore this error.

- 6. Reboot the target nodes.
- 7. Discover compute hosts:

salt 'ctl01*' state.sls nova.controller

After you deploy compute nodes, proceed with Deploy StackLight LMA if required.

Deploy the DevOps Portal manually

The DevOps Portal collects a comprehensive set of data about the cloud, offers visualization dashboards, and enables the operator to interact with a variety of tools.

Warning

The DevOps Portal has been deprecated in the Q4`18 MCP release tagged with the 2019.2.0 Build ID.

This section instructs you on how to manually deploy the DevOps Portal with the Operations Support System (OSS) services available. Eventually, you will be able to access the DevOps Portal at the VIP address of the deployment on port 8800 with the following services installed:

- Push Notification service
- Runbook Automation service
- Security Audit service
- Cleanup service
- PostgreSQL database management system
- Elasticsearch back end
- Gerrit and Jenkins as part of the CI/CD deployment, will be available from the DevOps Portal web UI
- OpenLDAP and aptly as part of the CI/CD deployment

Caution!

Before you can deploy the DevOps Portal, you must complete the steps described in Deploy CI/CD.

MCP enables you to configure the OSS services metadata in a Reclass model using Cookiecutter. Therefore, if you are performing the initial deployment of your MCP environment, you should have already configured your deployment model with the OSS parameters during the create-deployment-model-ui stage considering the dependencies described in MCP Reference Architecture: Dependencies between services. If so, skip the procedure described in Configure services in the Reclass model and proceed to Deploy OSS services manually.

Configure services in the Reclass model

Warning

The DevOps Portal has been deprecated in the Q4`18 MCP release tagged with the 2019.2.0 Build ID.

If the Reclass model of your deployment does not include metadata for OSS services, you must define it in the Reclass model before proceeding with the deployment of the DevOps portal.

To configure OSS services in the Reclass model:

1. In the init.yml file in the /srv/salt/reclass/classes/cluster/\${_param:cluster_name}/cicd/control/ directory, define the required classes.

The following code snippet contains all services currently available. To configure your deployment for a specific use case, comment out the services that are not required:

classes:

GlusterFS

- system.glusterfs.server.volume.devops_portal
- system.glusterfs.server.volume.elasticsearch
- system.glusterfs.server.volume.mongodb
- system.glusterfs.server.volume.postgresql
- system.glusterfs.server.volume.pushkin
- system.glusterfs.server.volume.rundeck
- system.glusterfs.server.volume.security_monkey
- system.glusterfs.client.volume.devops_portal
- system.glusterfs.client.volume.elasticsearch
- system.glusterfs.client.volume.mongodb
- system.glusterfs.client.volume.postgresql
- system.glusterfs.client.volume.pushkin
- system.glusterfs.client.volume.rundeck
- system.glusterfs.client.volume.security_monkey

Docker services

- system.docker.swarm.stack.devops_portal
- system.docker.swarm.stack.elasticsearch
- system.docker.swarm.stack.janitor monkey
- system.docker.swarm.stack.postgresql
- system.docker.swarm.stack.pushkin
- system.docker.swarm.stack.rundeck
- system.docker.swarm.stack.security_monkey

Docker networks

2. In the init.yml file in the /srv/salt/reclass/classes/cluster/\${_param:cluster_name}/cicd/control/ directory, define the required parameters:

• For the Runbook Automation service, define:

```
parameters:
_param:
rundeck_runbook_public_key: <SSH_PUBLIC_KEY>
rundeck_runbook_private_key: |
<SSH_PRIVATE_KEY>
```

• For the Security Audit service, define:

```
parameters:
_param:
security_monkey_openstack:
    username: <USERNAME>
    password: <PASSWORD>
    auth_url: <KEYSTONE_AUTH_ENDPOINT>
```

The configuration for the Security Audit service above will use the Administrator account to access OpenStack with the admin tenant. To configure the Security Audit

service deployment for a specific tenant, define the security_monkey_openstack parameter as follows:

```
parameters:
    _param:
    security_monkey_openstack:
    os_account_id: <OS_ACCOUNT_ID>
    os_account_name: <OS_ACCOUNT_NAME>
    username: <USERNAME>
    password: <PASSWORD>
    auth_url: <KEYSTONE_AUTH_ENDPOINT>
    project_domain_name: <PROJ_DOMAIN_NAME>
    project_name: <PROJ_NAME>
    user_domain_name: <USER_DOMAIN_NAME>
```

Warning

The project_name: <PROJ_NAME> parameter specifies a project for the Keystone authentication in the Security Audit service. Therefore, the service will not listen by projects, but synchronize issues from all projects in the current environment with the DevOps Portal using the specified project to authenticate.

• For the Janitor service, define:

```
parameters:

_param:

janitor_monkey_openstack:

username: <USERNAME>

password: <PASSWORD>

auth_url: <KEYSTONE_AUTH_ENDPOINT>
```

The configuration for the Janitor service above will use the Administrator account to access OpenStack with the admin tenant. To configure the Security Audit service deployment for a specific tenant, define the janitor_monkey_openstack parameter as follows:

```
parameters:
_param:
janitor_monkey_openstack:
username: <USERNAME>
password: <PASSWORD>
auth_url: <KEYSTONE_AUTH_ENDPOINT>
project_domain_name: <PROJ_DOMAIN_NAME>
project_name: <PROJ_NAME>
```

- 3. In the master.yml file in the /srv/salt/reclass/classes/cluster/\${_param:cluster_name}/cicd/control/ directory, configure classes and parameters as required:
 - Define classes for the DevOps Portal and services as required:

classes:
 # DevOps Portal
 - service.devops_portal.config

 # Elasticsearch
 - system.elasticsearch.client
 - system.elasticsearch.client.index.pushkin
 - system.elasticsearch.client.index.janitor_monkey

 # PostgreSQL
 - system.postgresql.client.pushkin
 - system.postgresql.client.rundeck
 - system.postgresql.client.security_monkey

 # Runbook Automation
 system nundeals cannot dealere

- system.rundeck.server.docker

- system.rundeck.client
- Define parameters for the Runbooks Automation service, if required:

```
parameters:
_param:
rundeck_db_user: ${_param:rundeck_postgresql_username}
rundeck_db_password: ${_param:rundeck_postgresql_password}
rundeck_db_host: ${_param:cluster_vip_address}
rundeck_postgresql_host: ${_param:cluster_vip_address}
rundeck_postgresql_port: ${_param:haproxy_postgresql_bind_port}
```

- 4. Push all changes of the model to the dedicated project repository.
- 5. Verify that the metadata of the Salt Master node contains all the required parameters:

```
reclass --nodeinfo=$SALT_MASTER_FQDN.$ENV_DOMAIN
salt '*' saltutil.refresh_pillar
salt '*' saltutil.sync_all
salt '$SALT_MASTER_FQDN.$ENV_DOMAIN' pillar.get devops_portal
```

For example, for the ci01 node on the cicd-lab-dev.local domain run:

reclass --nodeinfo=ci01.cicd-lab-dev.local salt '*' saltutil.refresh pillar

salt '*' saltutil.sync_all salt 'ci01.cicd-lab-dev.local' pillar.get devops_portal

Deploy OSS services manually

Warning

The DevOps Portal has been deprecated in the Q4`18 MCP release tagged with the 2019.2.0 Build ID.

Before you proceed with the services installation, verify that you have updated the Reclass model accordingly as described in Configure services in the Reclass model.

To deploy the DevOps portal:

- 1. Log in to the Salt Master node.
- 2. Refresh Salt pillars and synchronize Salt modules on all Salt Minion nodes:

salt '*' saltutil.refresh_pillar salt '*' saltutil.sync all

3. Set up GlusterFS:

salt -b 1 -C 'l@glusterfs:server' state.sls glusterfs.server

Note

The -b option specifies the explicit number of the Salt Minion nodes to apply the state at once to. Therefore, you will get a more stable configuration during the establishment of peers between the services.

4. Mount the GlusterFS volume on Docker Swarm nodes:

salt -C 'l@glusterfs:client' state.sls glusterfs.client

5. Verify that the volume is mounted on Docker Swarm nodes:

salt '*' cmd.run 'systemctl -a|grep "GlusterFS File System"|grep -v mounted'

6. Configure HAProxy and Keepalived for the load balancing of incoming traffic:

salt -C "l@haproxy:proxy" state.sls haproxy,keepalived

7. Set up Docker Swarm:

salt -C 'l@docker:host' state.sls docker.host salt -C 'l@docker:swarm:role:master' state.sls docker.swarm salt -C 'l@docker:swarm:role:master' state.sls salt salt -C 'l@docker:swarm:role:master' mine.flush salt -C 'l@docker:swarm:role:master' mine.update salt -C 'l@docker:swarm' state.sls docker.swarm salt -C 'l@docker:swarm:role:master' cmd.run 'docker node ls'

8. Configure the OSS services:

salt -C 'l@devops_portal:config' state.sls devops_portal.config salt -C 'l@rundeck:server' state.sls rundeck.server

Note

In addition to setting up the server side for the Runbook Automation service, the rundeck.server state configures users and API tokens.

9. Prepare aptly before deployment:

salt -C 'l@aptly:publisher' saltutil.refresh_pillar salt -C 'l@aptly:publisher' state.sls aptly.publisher

10 Apply the docker.client state:

salt -C 'l@docker:swarm:role:master' state.sls docker.client

11 Prepare Jenkins for the deployment:

salt -C 'l@docker:swarm' cmd.run 'mkdir -p /var/lib/jenkins'

12 Identify the IP address on which HAProxy listens for stats:

HAPROXY_STATS_IP=**\$(**salt -C 'l@docker:swarm:role:master' \ --out=newline_values_only \ pillar.fetch haproxy:proxy:listen:stats:binds:address)

Caution!

You will use the HAPROXY_STATS_IP variable to verify that the Docker-based service you are going to deploy is up in stats of the HAProxy service.

13 Verify that aptly is UP in stats of the HAProxy service:

curl -s "http://\${HAPROXY_STATS_IP}:9600/haproxy?stats;csv" | grep aptly

14 Deploy aptly:

salt -C 'l@aptly:server' state.sls aptly

15 Verify that OpenLDAP is UP in stats of the HAProxy service:

curl -s "http://\${HAPROXY_STATS_IP}:9600/haproxy?stats;csv" | grep openIdap

16 Deploy OpenLDAP:

salt -C 'l@openIdap:client' state.sls openIdap

17 Verify that Gerrit is UP in stats of the HAProxy service:

curl -s "http://\${HAPROXY_STATS_IP}:9600/haproxy?stats;csv" | grep gerrit

18 Deploy Gerrit:

salt -C 'l@gerrit:client' state.sls gerrit

Note

The execution of the command above may hang for some time. If it happens, re-apply the state after its termination.

19 Verify that Jenkins is UP in stats of the HAProxy service:

curl -s "http://\${HAPROXY_STATS_IP}:9600/haproxy?stats;csv" | grep jenkins

20 Deploy Jenkins:

salt -C 'l@jenkins:client' state.sls jenkins

Note

The execution of the command above may hang for some time. If it happens, re-apply the state after its termination.

21 Verify that the process of bootstrapping of the PostgreSQL container has been finalized:

docker service logs postgresql db | grep "ready to accept"

22 Verify that PostgreSQL is UP in stats of the HAProxy service:

curl -s "http://\$ {HAPROXY_STATS_IP}:9600/haproxy?stats;csv" | grep postgresql

23 Initialize OSS services databases by setting up the PostgreSQL client:

salt -C 'l@postgresql:client' state.sls postgresql.client

The postgresql.client state application will return errors due to cross-dependencies between the docker.stack and postgresql.client states. To configure integration between Push Notification and Security Audit services:

1. Verify that Push Notification service is UP in stats of the HAProxy service:

curl -s "http://\$ {HAPROXY_STATS_IP}:9600/haproxy?stats;csv" | grep pushkin

2. Re-apply the postgresql.client state:

salt -C 'l@postgresql:client' state.sls postgresql.client

24 Verify that Runbook Automation is UP in stats of the HAProxy service:

curl -s "http://\${HAPROXY_STATS_IP}:9600/haproxy?stats;csv" | grep rundeck

25 Deploy Runbook Automation:

salt -C 'l@rundeck:client' state.sls rundeck.client

26 Verify that Elasticksearch is UP in stats of the HAProxy service:

curl -s "http://\${HAPROXY_STATS_IP}:9600/haproxy?stats;csv" | grep elasticsearch

27 Deploy the Elasticsearch back end:

salt -C 'l@elasticsearch:client' state.sls elasticsearch.client

Due to index creation, you may need to re-apply the state above.

28 If required, generate documentation and set up proxy to access it. The generated content . will reflect the current configuration of the deployed environment:

salt -C 'l@sphinx:server' state.sls 'sphinx'
Execute 'salt-run' on salt-master
salt-run state.orchestrate sphinx.orch.generate_doc || echo "Command execution failed"
salt -C 'l@nginx:server' state.sls 'nginx'

Build a custom image of the DevOps Portal

Warning

The DevOps Portal has been deprecated in the Q4`18 MCP release tagged with the 2019.2.0 Build ID.

For testing purposes, you may need to create a custom Docker image to use it while deploying the DevOps Portal.

To build a custom Docker image:

1. Before you build the image and upload it to Sandbox, clone the source code of DevOps Portal:

git clone https://gerrit.mcp.mirantis.net/oss/devops-portal cd devops-portal

2. Build your image:

docker build --rm -f docker/Dockerfile -t \
docker-sandbox.sandbox.mirantis.net/[USERNAME]/oss/devops-portal:latest .

3. Push the image into a specific prefix on Sandbox:

docker push docker-sandbox.sandbox.mirantis.net/[USERNAME]/oss/devops-portal:latest

Configure Salesforce integration for OSS manually

Warning

The DevOps Portal has been deprecated in the Q4`18 MCP release tagged with the 2019.2.0 Build ID.

The Push Notification services can automatically create tickets in Saleforce based on the alarms triggered by the issues that are found by Prometheus Alertmanager. Moreover, the Push Notification service ensures the following:

- The Salesforce tickets are not duplicated. When the same alarm gets triggered multiple times, only one Saleseforce ticket is created per the alarm.
- The Push Notification service creates one entry in a SalesForce feed, that is a FeedItem, per alarm with a link to an existing ticket. This enables the users to track important changes as well as close the ticket which has been fixed.

Warning

This section describes how to manually configure the Push Notification service Reclass metadata to integrate with Salesforce in an existing OSS deployment. Therefore, if you want to configure the Salesforce integration, perform the procedure below.

Otherwise, if you are performing the initial deployment of your MCP environment, you should have already configured your deployment model with the Salesforce (SFDC) parameters as described in OSS parameters. In this case, skip this section.

To configure Salesforce integration for OSS manually:

- 1. Collect the following data from Saleforce:
 - auth_url

The URL of a Salesforce instance. The same for the MCP users.

username

The username in Salesforce used for integration; all Salesforce cases are created by this user. The unique identifier for an MCP user.

password

The password used for logging in to the Support Customer Portal. The unique identifier for an MCP user.

environment

The Cloud ID in Salesforce. The unique identifier for an MCP user.

The detailed information on a Salesforce Cloud is provided by either Mirantis support engineers or customer depending on whom the Cloud object was created by.

consumer_key

The Consumer Key in Salesforce required for Open Authorization (OAuth).

consumer_secret

The Consumer Secret from Salesforce required for OAuth.

organization_id

The Salesforce Organization ID in Salesforce required for OAuth.

- 2. Verify that the following services are properly configured and deployed:
 - Elasticsearch
 - PostgreSQL

Note

For the configuration and deployment details, see:

- Configure services in the Reclass model
- Deploy OSS services manually
- 3. In the classes/cluster/\${_param:cluster_name}/oss/client.yml file of your deployment model, define the system.postgresql.client.sfdc class :

classes:

system.postgresql.client.sfdc

4. In the /srv/salt/reclass/classes/cluster/\${_param:cluster_name}/oss/server.yml file, define the following parameters:

parameters:
_param:
SFDC configuration
<pre>sfdc_auth_url: <auth_url></auth_url></pre>
sfdc_username: <username></username>
<pre>sfdc_password: <password></password></pre>
<pre>sfdc_consumer_key: <consumer_key></consumer_key></pre>
sfdc_consumer_secret: <consumer_secret></consumer_secret>
sfdc_organization_id: <organization_id></organization_id>
sfdc_sandbox_enabled: True
Note

Sandbox environments are isolated from the production Salesforce clouds. Set the sfdc_sandbox_enabled to True to use Salesforce sandbox for testing and evaluation purposes. Verify that you specify the correct sandbox-url value in the sfdc_auth_url parameter. Otherwise, set the parameter to False.

- 5. Push all changes of the model to the dedicated project repository.
- 6. Refresh pillars and synchronize Salt modules:

salt '*' saltutil.refresh_pillar
salt '*' saltutil.sync_modules

7. If you have the running pushkin docker stack, remove it and apply the following Salt states:

salt -C 'l@docker:swarm:role:master' state.sls docker.client salt -C 'l@postgresql:client' state.sls postgresql.client

- 8. To test whether the Push Notification service is configured properly:
 - 1. View the list of all applications, preconfigured in the Push Notification service, and their details by checking the system response for the following command:

curl -D - http://\$ {HAPROXY STATS IP}:8887/apps

Example of system response:

{"applications": [{"login_id": 11, "enabled": true, "id": 1, "name": "notify_service"}]}

2. Send the test request to the service using the following command:

```
curl -i -XPOST -H 'Content-Type: application/json' <PUSH_NOTIFICATION_ENDPOINT> -d \
    '{"notifications": [{"login_id" : <APP_LOGIN_ID>, \
    "title" : "Salesforce test notification", \
    "content" : {"handler": "sfdc","payload": \
    {"status": "<NOTIFICATION_STATUS>","priority": "<NOTIFICATION_PRIORITY>",\
    "subject": "<NOTIFICATION_SUBJECT>","host": "<EXAMPLE.NET>",\
    "service": "<SERVICE>","environment": "<ENVIRONMENT_ID>",\
    "body": "<NOTIFICATION_ITEM_BODY>"}, \
    "application_id": <APP_ID>}]}'
```

The table below provides the desription of the parameters required for the test request.

Parameter	Description
login_id	The Login ID of an application on behalf of which the notification will be send. Define the parameter according to the login_id parameter value retrieved during the previous step.
environment	The Cloud ID in Salesforce which the notification will be send to. Define the parameter according to the environment parameter value collected during the first step of this procedure.
application_id	The ID of an application on behalf of which the notification will be send. Define the parameter according to the id parameter value retrieved during the previous step.

Example:

curl -i -XPOST -H 'Content-Type: application/json' http://\${HAPROXY_STATS_IP}:8887/post_notification_json -d \
'{"notifications": [{"login_id" : 12, \
"title" : "SFDC test notification", \
"content" : {"handler": "sfdc", "payload": \
{"status": "down", "priority": "070 Unknown",\
"subject": "Notification subject", "host": "example.net",\
"service": "test-service", "environment": "123",\
"body": "Notification item body"}, \
"application_id": 2}]]'

3. Log in to Salesforce and verify that the alert is filed correctly.

Configure email integration for OSS manually

Warning

The DevOps Portal has been deprecated in the Q4`18 MCP release tagged with the 2019.2.0 Build ID.

Note

Configuring notifications through the Push Notification service is deprecated. Mirantis recommends that you configure Alertmanager-based notifications as described in MCP Operations Guide: Enable Alertmanager notifications.

The Push Notification service can route notifications based on the alarms triggered by the issues that are found by Prometheus Alertmanager through email.

Warning

This section describes how to manually configure the Push Notification service Reclass metadata to integrate email routing for notifications in an existing OSS deployment. Therefore, if you want to configure the email routing configuration, perform the procedure below.

Otherwise, if you are performing the initial deployment of your MCP environment, you should have already configured your deployment model with the default Simple Mail Transfer Protocol (SMTP) parameters for the Push Notification service as described in OSS parameters and the OSS webhook parameters as described in StackLight LMA product parameters. In this case, skip this section.

Note

The Push Notification service only routes the received notifications to email recipients. Therefore, you must also provide the Prometheus Alertmanager service with a predefined alert template containing an email handler as described in MCP Operations Guide: Enable notifications through the Push Notification service.

To configure email integration for OSS manually:

1. Obtain the following data:

pushkin_smtp_host

SMTP server host for email routing. Gmail server host is used by default (smtp.gmail.com).

- pushkin_smtp_port SMTP server port for email routing. Gmail server port is used by default (587).
- webhook_from
 Source email address for notifications sending.
- pushkin_email_sender_password

Source email password for notifications sending.

webhook_recipients

Comma-separated list of notification recipients.

- 2. Verify that the following services are properly configured and deployed:
 - Elasticsearch
 - PostgreSQL

Note

For the configuration and deployment details, see:

- Configure services in the Reclass model
- Deploy OSS services manually
- 3. In the /srv/salt/reclass/classes/cluster/\${_param:cluster_name}/oss/server.yml file, define the following parameters:

```
parameters:
_param:
    pushkin_smtp_host: smtp.gmail.com
    pushkin_smtp_port: 587
    webhook_from: your_sender@mail.com
    pushkin_email_sender_password: your_sender_password
    webhook_recipients: "recepient1@mail.com,recepient2@mail.com"
```

- 4. Push all changes of the model to the dedicated project repository.
- 5. Refresh pillars and synchronize Salt modules:

```
salt '*' saltutil.refresh_pillar
salt '*' saltutil.sync_modules
```

6. If you have the running pushkin docker stack, remove it and apply the following Salt states:

salt -C 'l@docker:swarm:role:master' state.sls docker.client

Deploy StackLight LMA

StackLight LMA is the Logging, Monitoring, and Alerting toolchain, the capacity planning, operational health, and response monitoring solution for Mirantis Cloud Platform (MCP). StackLight LMA is based on the time-series database and flexible cloud-native monitoring solution called Prometheus. Prometheus provides powerful querying capabilities and integrates with Grafana providing real-time visualization.

This section explains how to configure and install StackLight LMA including the components that it integrates after you deploy a Kubernetes cluster or an OpenStack environment on your MCP cluster.

Before you start installing the StackLight LMA components, verify that your MCP cluster meets the StackLight LMA hardware requirements.

Prerequisites

Before you start installing the StackLight LMA components, complete the following steps:

1. Configure StackLight LMA for installation.

The configuration of StackLight LMA for installation is defined in the Reclass model. See stacklight-salt-model as an example of the Reclass model to install StackLight LMA on Mirantis Cloud Platform. Three levels of the Reclass models are currently collocated on the Salt Master node under the /srv/salt/reclass/classes directory:

- The service level model is imported directly from the metadata/service directory of all MCP formulas. The Reclass parameters that are defined at the service level are the most generic parameters and should not be modified in practice.
- The system level model, which is currently defined in the user Reclass model, imports the service level models and defines additional parameters. The parameters defined in the system level model relate to the system-wide configuration of StackLight LMA, such as the IP address and port number of the Elasticsearch server.
- The cluster level model defines the configuration of StackLight LMA for a particular deployment. A user Reclass model to install OpenStack with StackLight LMA must be created. This is where you typically customize your deployment.
- 2. Deploy Docker Swarm master:

salt -C 'l@docker:host' state.sls docker.host salt -C 'l@docker:swarm:role:master' state.sls docker.swarm

3. Deploy Docker Swarm workers:

salt -C 'l@docker:swarm:role:manager' state.sls docker.swarm -b 1

4. Deploy Keepalived:

salt -C 'l@keepalived:cluster' state.sls keepalived -b 1

5. Deploy NGINX proxy:

salt -C 'l@nginx:server' state.sls nginx

6. Verify that you have Internet access to download several external packages that are not included in the standard Ubuntu distribution. If there is no Internet access, these repositories must be mirrored on MCP.

Install the system-level Stacklight LMA services

StackLight LMA integrates several backend servers to visualize an environment monitoring and health statuses. This section describes how to install the Elasticsearch and Kibana logs analysis solution. For a Kubernetes-based MCP cluster, additionally install Galera.

Install Elasticsearch and Kibana

The Elasticsearch and Kibana servers must be installed on the log cluster of the Mirantis Cloud Platform.

Caution!

To avoid the split-brain issues, install the Elasticsearch and Kibana cluster on a minimum of three nodes.

Note

Advanced cluster operations may require manual steps.

Configure Elasticsearch and Kibana

The configuration parameters of the Elasticsearch engine and Kibana dashboards are defined in the corresponding Salt formulas. For details and the configuration examples, see Elasticsearch Salt formula and Kibana Salt formula.

Deploy Elasticsearch and Kibana

The deployment of Elasticsearch and Kibana consists of the server and the client deployment.

To deploy Elasticsearch and Kibana:

- 1. Log in to the Salt Master node.
- 2. Deploy the Elasticsearch and Kibana services:

salt -C 'l@elasticsearch:server' state.sls elasticsearch.server -b 1 salt -C 'l@kibana:server' state.sls kibana.server -b 1

3. Deploy the Elasticsearch and Kibana clients that will configure the corresponding servers:

salt -C 'l@elasticsearch:client' state.sls elasticsearch.client salt -C 'l@kibana:client' state.sls kibana.client

4. Apply the haproxy state on the log nodes:

salt 'log*' state.sls haproxy

Verify Elasticsearch and Kibana after deployment

After you deploy Elasticsearch and Kibana, verify that they are up and running using the steps below.

To verify the Elasticsearch cluster:

- 1. Log in to one of the log hosts.
- 2. Run the following command:

curl http://log:9200

Example of the system response:

```
curl http://log:9200
{
    "name" : "log01",
    "cluster_name" : "elasticsearch",
    "cluster_uuid" : "KJM5s5CkTNKGkhd807gcCg",
    "version" : {
        "number" : "2.4.4",
        "build_hash" : "fcbb46dfd45562a9cf00c604b30849a6dec6b017",
        "build_timestamp" : "2017-06-03T11:33:16Z",
        "build_snapshot" : false,
        "lucene_version" : "5.5.2"
    },
    "tagline" : "You Know, for Search"
}
```

To verify the Kibana dashboard:

- 1. Log in to the Salt Master node.
- 2. Identify the prx VIP of your MCP cluster:

salt-call pillar.get _param:openstack_proxy_address

- 3. Open a web browser.
- Paste the prx VIP and the default port 5601 to the web browser address field. No credentials are required.

Once you access the Kibana web UI, you must be redirected to the Kibana Logs analytics dashboard.

Install Galera (MySQL)

For the Kubernetes-based MCP clusters, you must also install Galera as a back end for StackLight LMA. Galera is a synchronous multi-master database cluster based on the MySQL storage engine.

To install Galera:

- 1. Log in to the Salt Master node.
- 2. Apply the galera state:

salt -C 'l@galera:master' state.sls galera salt -C 'l@galera:slave' state.sls galera -b 1

3. Verify that Galera is up and running:

salt -C 'l@galera:master' mysql.status | grep -A1 wsrep_cluster_size salt -C 'l@galera:slave' mysql.status | grep -A1 wsrep_cluster_size

Install the StackLight LMA components

After you deploy Elasticsearch and Kibana as described in Install the system-level Stacklight LMA services, proceed to configuring and installing Prometheus-based StackLight LMA.

Warning

If any of the steps below fail, do not proceed without resolving the issue.

To install the StackLight LMA components:

- 1. Log in to the Salt Master node.
- 2. Install Telegraf:

salt -C 'l@telegraf:agent or l@telegraf:remote_agent' state.sls telegraf

This formula installs the Telegraf package, generates configuration files, and starts the Telegraf service.

3. Configure Prometheus exporters:

salt -C 'l@prometheus:exporters' state.sls prometheus

4. Configure Fluentd:

salt -C 'l@fluentd:agent' state.sls fluentd.agent

5. Install MongoDB:

salt -C 'l@mongodb:server' state.sls mongodb

6. Generate the configuration for services running in Docker Swarm:

salt -C 'l@docker:swarm and l@prometheus:server' state.sls prometheus -b 1

7. Deploy Prometheus long-term storage.

salt -C 'l@prometheus:relay' state.sls prometheus

8. Deploy the monitoring containers:

salt -C 'l@docker:swarm:role:master and l@prometheus:server' state.sls docker

9. Configure the Grafana client:

.

salt -C 'l@grafana:client' state.sls grafana.client

10 Customize the alerts as described in MCP Operations Guide: Alerts that require tuning.

11 Proceed to Verify the StackLight LMA components after deployment.

Verify the StackLight LMA components after deployment

Once you install the StackLight LMA components as described in Install the StackLight LMA components, verify that all components have been successfully deployed and all services are up and running.

To verify the StackLight LMA components:

- 1. Log in to the Salt Master node.
- 2. Verify that all the monitoring services running in Docker Swarm have their expected number of replicas:

salt -C 'I@docker:client:stack:monitoring' cmd.run 'docker service Is'

Example:

root@su	p01:~# docker service ls	5		
ID	NAME	MODE	REPLICAS IMAC	SE
j0hrlth0a	agyx monitoring_server		replicated 1/1	prometheus:latest
pqeqda711a69 dashboard_grafana		replicated 1/1	. grafana/grafana:latest	
xrdmspdexojs monitoring_pushgateway		replicated 2	/2 pushgateway:latest	
xztynkgfo1pu monitoring_alertmanager		replicated 2/	2 alertmanager:latest	
i2xc7j9e	i81k monitoring_remote_	agent	replicated 1/2	1 telegraf:latest

3. Verify the status of the containers:

salt -C 'l@docker:swarm:role:master and l@prometheus:server' cmd.run \ 'docker service ps \$(docker stack services -q monitoring)'

4. Inspect the monitoring containers logs for any unusual entries:

salt -C 'l@docker:swarm:role:master and l@prometheus:server' cmd.run \
'for i in \$(docker stack services -q monitoring); do docker service logs --tail 10 \$i; done'

5. Verify that the Fluentd service is running:

salt -C 'l@fluentd:agent' service.status td-agent

6. Verify Prometheus Relay:

salt -C 'l@prometheus:relay' service.status prometheus-relay

7. If deployed, verify Prometheus long-term storage:

salt -C 'l@prometheus:relay' service.status prometheus

- 8. Verify the Prometheus web UI:
 - 1. Connect to the Prometheus web UI as described in the corresponding section of the MCP Operations Guide.
 - 2. From the Status drop-down list, select Targets.
 - 3. Verify that all targets are in the UP state.
 - 4. Click the Alerts tab.
 - 5. Verify that no alerts are active.
- 9. Verify the Alertmanager web UI:
 - 1. Connect to the Alertmanager web UI as described in Use the Alertmanager web UI.
 - 2. Click Alerts.
 - 3. Verify that no alerts are active.

10 Verify the Grafana dashboards:

- 1. Enter the prx VIP on port 3000 by default.
- 2. Authenticate using your credentials as described in Connect to Grafana. You should be redirected to the Grafana Home page with a list of available dashboards sorted by name.
- 3. Verify that all nodes are listed in the System dashboard.
- 11 Verify the Kibana dashboards by connecting to Kibana as described in the Connect to . Kibana.

Seealso

- MCP Reference Architecture: StackLight LMA
- MCP Operations Guide: StackLight LMA operations

Finalize the deployment

The last step of a manual deployment is ensuring highstates on all nodes.

To ensure highstates:

- 1. Log in to the Salt Master node.
- 2. Verify that all machines have connectivity with the Salt Master node:

salt '*' test.ping

3. Ensure highstate on the Salt Master node:

salt-call state.apply -I debug

4. Ensure highstate on the GlusterFS nodes one by one to avoid race condition:

salt -C 'l@glusterfs:server' state.apply -b1 -l debug

5. Ensure highstate on the rest of the nodes:

salt -C '* and not l@glusterfs:server and not cfg*' state.apply -l debug

Deployment customizations guidelines

This section contains instructions that do not belong to a specific part of the deployment workflow. Otherwise speaking, the procedures included in this section are optional and contain only customizations guidelines that can be skipped if you perform the default MCP deployment.

The procedures below are referenced from the sections where they can merge into the general deployment workflow. You should not perform these procedures as standalone instructions. And always remember to continue the deployment exactly from the step that referenced you to this section.

Generate configuration drives manually

You may need to manually generate the configuration drives for an automated MCP deployment after you customize their content to meet specific requirements of your deployment. This section describes how to generate the configuration drives using the create-config-drive script.

To generate a configuration drive for the cfg01 VM:

1. Download the create-config-drive script for generating the configuration drive:

```
export MCP_VERSION="master"
wget -0 /root/create-config-drive.sh \
https://raw.githubusercontent.com/Mirantis/mcp-common-scripts/${MCP_VERSION}/config-drive/create_config_drive.sh
chmod +x /root/create-config-drive.sh
```

2. Download the Salt Master configuration script:

```
wget -O /root/user_data.yaml \
https://raw.githubusercontent.com/Mirantis/mcp-common-scripts/${MCP_VERSION}/config-drive/master_config.yaml
```

- 3. In user_data.yaml, modify the lines that start with export to fit your environment. If you use local (aptly) repositories, select the following parameters to point to your local repositories address on port 8088:
 - MCP_VERSION
 - PIPELINES_FROM_ISO=false
 - PIPELINE_REPO_URL
 - MCP_SALT_REPO_KEY
 - MCP_SALT_REPO_URL
- 4. For debugging purposes, configure custom access to the cfg01 node in user_data.yaml using the following parameters:
 - name user name.
 - sudo, NOPASSWD the sudo permissions for a user. The value ALL grants administrator privileges to a user.
 - groups a user group. For example, admin. Add a comma-separated list of groups if necessary.
 - lock_passwd deny or allow logging in using a password. Possible values are true (deny) or false (allow). Select false.
 - passwd a password hash, not the password itself. To generate a password and its hash, run mkpasswd --method=SHA-512 --rounds=4096. Remember the generated password for further access to the virsh console.

Configuration example:

```
users:
- name: barfoo
sudo: ALL=(ALL) NOPASSWD:ALL
groups: admin
lock_passwd: false
passwd: <generated_password_hash>
```

- 5. Select from the following options:
 - If you do not use local repositories:
 - 1. Clone the mk-pipelines and pipeline-library Git repositories:

git clone --mirror https://github.com/Mirantis/mk-pipelines.git /root/mk-pipelines git clone --mirror https://github.com/Mirantis/pipeline-library.git /root/pipeline-library

- 2. Put your Reclass model that contains the classes/cluster, classes/system, nodes, .git, and .gitmodules directories in /root/model.
- 3. Install genisoimage:

apt install genisoimage

4. Run the configuration drive generator script:

/root/create-config-drive.sh -u /root/user_data.yaml -h cfg01 \
--model /root/model --mk-pipelines /root/mk-pipelines \
--pipeline-library /root/pipeline-library cfg01-config.iso

The generated configuration drive becomes available as the cfg01-config.iso file.

- If you use local repositories:
 - 1. Install genisoimage:

apt install genisoimage

2. Put your Reclass model that contains the classes/cluster, classes/system, nodes, .git, and .gitmodules directories in /root/model.

```
mkdir /root/model
cp -r /root/mcpdoc/{classes, .git, .gitmodules, nodes } /root/model
tree /root/model -aL 2
```

3. Run the configuration drive generator script:

/root/create-config-drive.sh -u /root/user_data.yaml -h cfg01 \ --model /root/model cfg01-config.iso The generated configuration drive becomes available as the cfg01-config.iso file. To generate a configuration drive for the APT VM:

1. Download the create-config-drive script for generating the configuration drive:

```
export MCP_VERSION="master"
wget -O /root/create-config-drive.sh \
https://raw.githubusercontent.com/Mirantis/mcp-common-scripts/${MCP_VERSION}/config-drive/create_config_drive.sh
chmod +x /root/create-config-drive.sh
```

2. Download the mirror configuration script:

```
wget -O /root/user_data.yaml \
https://raw.githubusercontent.com/Mirantis/mcp-common-scripts/${MCP_VERSION}/config-drive/mirror_config.yaml
```

- 3. In user_data.yaml, modify the lines that start with export to fit your environment.
- 4. Run the configuration drive generator script:

/root/create-config-drive.sh -u /root/user_data.yaml -h apt01 apt-config.iso

The generated configuration drive should now be available as the apt-config.iso file.

To generate a simple configuration drive for any cloud-image:

1. Install the cloud-image-utils tool:

apt-get install -y cloud-image-utils

- 2. For example, create a configuration file with the config-drive-params.yaml name.
- 3. In this file, enable the password access for root and Ubuntu users. For example:

#cloud-config debug: True
ssh_pwauth: True
disable_root: false
list: root:r00tme ubuntu:r00tme expire: False
runcmd : - sed -i 's/PermitRootLogin.*/PermitRootLogin yes/g' /etc/ssh/sshd_config - sed -i 's/PasswordAuthentication.*/PasswordAuthentication yes/g' /etc/ssh/sshd_config - service sshd restart

4. Create the configuration drive:

cloud-localds --hostname testvm --dsmode local mynewconfigdrive.iso config-drive-params.yaml

Now, you can use mynewconfigdrive.iso with any cloud-image. For example, with the MCP VCP images or any other image that has cloud-init pre-installed.

Add custom commissioning scripts

Using MAAS, you can extend the default commissioning logic with additional user-defined scripts. Each defined script will be applied to a VM commissioning by default.

For example, to set custom NIC names that are oneXX for a 1 GB Ethernet and tenXX for a 10 GB Ethernet, refer to the following procedures.

In the examples below, the default 00-maas-05-simplify-network-interfaces script from the salt-formulas-maas package is used. The script is located on the Salt Master node in the /srv/salt/env/prd/maas/files/commisioning_scripts/ directory.

To automatically add the commissioning script using Salt:

- 1. Prepare a script for commissioning and save it on the MAAS control node, which is located on the Salt Master node. For example, use the default script from the salt-formulas-maas package.
- 2. Enable automatic importing of the script by defining it in /srv/salt/reclass/classes/cluster/<CLUSTER_NAME>/infra/maas.yml:

```
parameters:
maas:
region:
commissioning_scripts:
00-maas-05-simplify-network-interfaces: /etc/maas/files/commisioning_scripts/00-maas-05-simplify-network-interfaces
machines:
```

Caution!

The commissioning script name is important. If you have several scripts, they will run in the alphanumeric order depending on their name.

3. Run the following command:

```
salt-call -l debug --no-color maas.process_commissioning_scripts
```

Example of system response:

```
...
local:
------
errors:
------
success:
- 00-maas-05-simplify-network-interfaces
```

The script 00-maas-05-simplify-network-interfaces is uploaded to MAAS from the /etc/maas/files/commisioning_scripts/ directory.

After the importing is done, proceed with commissioning depending on your use case as described in Provision physical nodes using MAAS.

To clean up old software RAID:

If you re-install the operating system on the nodes where the software RAID was set up and was not correctly removed, MAAS may encounter the problem while attempting to provision the system. Therefore, you may want to enable the cleanup commissioning script before you proceed with the comissioning of such a hardware node.

Note

The cleanup commissioning script is not included in MAAS by default.

Caution!

If the cleanup commissioning script is allowed, it erases all data located on the disks.

To enable the cleanup commissioning script, select from the following options:

- Enable the script through the Reclass model:
 - 1. Log in to the Salt Master node.
 - 2. Open the cluster level of your Reclass model.
 - 3. Define the script:

parameters:
maas:
region:
commissioning_scripts:
00-maas-01-disk-cleanup: /etc/maas/files/commisioning_scripts/00-maas-01-disk-cleanup

4. Apply the change:

salt -C 'l@maas:region' maas.process_commissioning_scripts

• Define the script through the MAAS web UI as described in Upload procedure in the official MAAS documentation.

After the script is enabled, proceed with commissioning depending on your use case as described in Provision physical nodes using MAAS.

To manually add the commissioning script using the MAAS web UI:

- 1. Log in to the MAAS web UI through salt_master_management_address/MAAS with the following credentials:
 - Username: mirantis
 - Password: r00tme
- 2. Go to the Settings tab.
- 3. Scroll to Commissioning scripts.
- 4. Click Upload script to chose a file for uploading. For example, use the default script from the salt-formulas-maas package.

Caution!

The commissioning script name is important. If you have several scripts, they will run in the alphanumeric order depending on their name.

After the importing is done, proceed with commissioning depending on your use case as described in Provision physical nodes using MAAS.

Customize the prebuilt mirror node

This section describes the content and sources definition for the apt01 node. For the deployment details, see: Deploy the APT node. Using procedures described in this section, you can enable a full lifecycle management of an offline apt01 node.

By default, an MCP deployment does not contain any pillar information about an offline node content.

Warning

Enabling of the offline mirror management is not fully supported, and may override some variables on the cluster level of the Reclass model.

Enable the APT node management in the Reclass model

This section instructs you on how to configure your existing cluster model to enable the management of the offline mirror VM through the Salt Master node.

Warning

Perform the procedure below only in case of an offline deployment or when using a local mirror from the prebuilt image.

To configure the APT node management in the Reclass model:

- 1. Verify that you have completed Enable the management of the APT node through the Salt Master node.
- 2. Log in to the Salt Master node.
- 3. Open the cluster level of your Reclass model.
- 4. In infra/config/nodes.yml, add the following pillars:

```
parameters:
reclass:
  storage:
   node:
    aptly_server_node01:
     name: ${ param:aptly server hostname}01
     domain: ${ param:cluster domain}
     classes:
     - cluster.${ param:cluster name}.infra
     - cluster.${ param:cluster name}.infra.mirror
     - system.linux.system.repo.mcp.apt mirantis.extra
     - system.linux.system.repo.mcp.apt mirantis.ubuntu
     - system.linux.system.repo.mcp.apt mirantis.docker
     params:
      salt_master_host: ${ param:reclass config master}
      linux system codename: xenial
      single address: ${ param:aptly server control address}
      deploy_address: ${ param:aptly server deploy address}
```

5. If the offline mirror VM is in the full offline mode and does not have the infra/mirror path, create the infra/mirror/init.yml file with the following contents:

classes:

- service.docker.host
- system.git.server.single
- system.docker.client

parameters:

linux: network: interface: ens3: \${_param:single_address}

For a complete example of the mirror content per MCP release, refer to init.yml located at https://github.com/Mirantis/mcp-local-repo-model/blob/<BUILD_ID>/ tagged with a corresponding Build ID.

6. Add the following pillars to infra/init.yml or verify that they are present in the model:

```
parameters:
linux:
network:
host:
apt:
address: ${_param:aptly_server_deploy_address}
names:
- ${_param:aptly_server_hostname}
- ${_param:aptly_server_hostname}.${_param:cluster_domain}
```

7. Check out your inventory to be able to resolve any inconsistencies in your model:

reclass-salt --top

- 8. Use the system response of the reclass-salt --top command to define the missing variables and specify proper environment-specific values if any.
- 9. Generate the storage Reclass definitions for your offline image node:

salt-call state.sls reclass.storage -l debug

10 Synchronize pillars and check out the inventory once again:

salt '*' saltutil.refresh_pillar reclass-salt --top

11 Verify the availability of the offline mirror VM. For example:

salt 'apt01.local-deployment.local' test.ping

If the VM does not respond, verify that Salt Master accepts the key for the VM using the salt-key command.

Customize the prebuilt mirrors

You can easily customize mirrored Aptly, Docker, and Git repositories by configuring contents of the mirror VM defined in the infra/mirror/init.yml file of the Reclass model.

To customize the debmirror repositories mirrors

You can either customize the already existing debmirrors content or specify any custom mirror required by your MCP deployment.

1. Customize the debmirror content as required. Example of customization:

Note

Starting from the MCP Build ID 2019.2.0, the default list of repositories per release is defined in reclass-system/debmirror/mirror_mirantis_com/init.yml. For earlier MCP releases, the repositories are included directly from the corresponding classes.

debmirror [.]
client:
enabled: true
mirrors:
mirror mirantis com ceph luminous xenial:
arch:
- amd64
dist:
- xenial
extra flags:
verbose
progress
nosource
no-check-gpg
rsync-extra=none
filter:
'1':exclude='(-dbg_ -dbg-)'
force: false
lock_target: true
log_file: /var/log/debmirror/mirror_mirantis_com_ceph_luminous_xenial.log
method: rsync
mirror_host: mirror.mirantis.com
mirror_root: :mirror/proposed/ceph-luminous/xenial/
section:
- main
target_dir : /srv/volumes/aptly/public/proposed//ceph-luminous/xenial/

2. Include the debmirror content class to infra/mirror/init.yml. For example, to include all repositories by default for future MCP cluster update, add the following class:

- system.debmirror.mirror_mirantis_com

3. Apply the debmirror state:

salt '<offline_node_name>' state.apply debmirror

Example: Deliver the OpenStack Pike update repository to an offline deployment

For a fully isolated MCP cluster with no access to the Mirantis mirrors even from the apt01 node, you can enable generation of a copy of a mirrored repository directly on a host node. You can then move this copy to the apt01 node using scp or rsync, for example.

This is the exemplary procedure of the debmirror repository customization that delivers the OpenStack Pike update repository. Such customization enables you to obtain the MCP maintenance updates.

Note

The exemplary steps described below are performed locally in a non-customized Docker container that runs Ubuntu 16.04. However, you can use any other debmirror-compatible operating system.

1. In reclass-system/debmirror/mirror_mirantis_com/init.yml described above, identify the repository classes available for an MCP release version deployed on your cluster and select the one that you need to receive maintenance updates for. For example, for OpenStack Pike:

cat debmirror/mirror mirantis com/init.yml |grep openstack-pike

- system.debmirror.mirror mirantis com.openstack-pike.xenial

...

2. Obtain the required data for the selected class and convert it to a debmirror utility.

Note

For human readability, the debmirror formula has the native debmirror syntax that allows you to convert a class data into a local cmdline.

For example:

1. Display contents of the OpenStack xenial.yml file:

```
cat debmirror/mirror_mirantis_com/openstack-pike/xenial.yml
parameters:
 debmirror:
   client:
    enabled: true
    mirrors:
     mirror mirantis com openstack pike xenial:
      force: ${ param:mirror mirantis com openstack pike xenial force}
      lock target: True
      extra flags: [ '--verbose', '--progress', '--nosource', '--no-check-gpg', '--rsync-extra=none' ]
      method: "rsync"
      arch: [ 'amd64' ]
      mirror host: "mirror.mirantis.com"
      mirror_root: ":mirror/${_param:mcp_version}/openstack-pike/xenial/"
      target_dir: "${_param:debmirror_mirrors_base_target_dir}/openstack-pike/xenial/"
      log_file: "/var/log/debmirror/mirror_mirantis_com_openstack_pike_xenial.log"
      dist: [ xenial ]
      section: [main]
      filter
       001: --exclude='(-| )dbg( |-)'
```

2. Convert the contents obtained in the previous step into the debmirror cmdline:

debmirror --verbose --progress --nosource --no-check-gpg --rsync-extra=none --dist=xenial --section=main \ --method=rsync --host="mirror.mirantis.com" --root=":mirror/update/2019.2.0/openstack-pike/xenial/" \ --arch=amd64 --exclude='(-|)dbg(|-)' /debmirror example/update/2019.2.0/update/openstack-pike/xenial/

In the example cmdline above, the path to mirror_root is extended with the /update/ subdirectory to fetch the update repository.

3. Create a directory for the update repository. For example:

mkdir debmirror_example/2019.2.0/update/openstack-pike/xenial/

4. Run a non-customized Docker container that runs Ubuntu 16.04. For example:

docker run -v \$(pwd)/debmirror_example:/debmirror_example --hostname=docker-16 \
--cpus=4 -ti ubuntu:xenial /bin/bash

5. Install debmirror in this container:

root@docker-16:/# apt-get update && apt-get install -y xz-utils debmirror rsync apt-transport-https curl root@docker-16:/# curl -fsSL https://mirror.mirantis.com/update/2019.2.0/openstack-pike/xenial/archive-pike.key | apt-key add -

6. Run cmdline prepared in the step 2.2:

root@docker-16:/# debmirror --verbose --progress --keyring=/etc/apt/trusted.gpg --nosource \
--rsync-extra=none --dist=xenial --section=main --method=rsync \
--host="mirror.mirantis.com" --root=":mirror/update/2019.2.0/openstack-pike/xenial/" \
--arch=amd64 --exclude='(-|_)dbg(_|-)' /debmirror_example/update/2019.2.0/openstack-pike/xenial/

- 7. Exit from the Docker container.
- 8. Inspect the update mirror that is now locally available in:

9. Move the structure of the downloaded repository to the apt01 node. By default, the update mirror structure is located on the apt01 node in /srv/volumes/aptly/public/update/2019.2.0/openstack-pike.

Warning

While modifying /srv/volumes/aptly/public/update/, make sure that you remove the symlinks only for those repositories that you are going to update. In this example, this is only openstack-pike. Otherwise, the main release binaries for the components that are not being updated will be lost.

1. In /srv/volumes/aptly/public/update/, remove the default symlink that refers to the MCP release version deployed on a cluster. For example:

rm -v /srv/volumes/aptly/public/update/2019.2.0

Note

The symlink is created in the offline mirror for backward compatibility purposes.

2. Create the same links for the underlay repositories. Use the following script as example:

```
apt01:# export release='2019.2.0'; pushd '/srv/volumes/aptly/public/update/' \
    if [[ -d ${release} && ! -h ${release} ]]; then echo 'lts already dir, nothing todo' ;else \
    rm -v ${release}; \
    mkdir -p ${release}; \
    cd ${release}; \
    for repo in $(ls ../../${release}/); do ln -sv ../../${release}/$repo .; done; \
    fi
```

3. Remove only required symlink, for example, openstack-pike, and move the newly generated data to the new structure.

The final example structure is as follows:

To customize the Docker images mirrors

The Docker repositories are defined as an image list that includes a registry and name for each Docker image.

- 1. Customize the list depending on the needs of your MCP deployment:
 - Specify a different Docker registry for the existing image to be pulled from
 - Add a new Docker image

Customization example in infra/mirror/init.yml:

Note

Starting from the MCP Build ID 2019.2.0, the default list of repositories per release is defined in default_local_mirror_content:docker_client_registry_image.

docker: client: registry:

target_registry: apt:5000 image:

name: openIdap:1.2.2
 registry: docker-prod-local.artifactory.mirantis.com/mirantis/external/osixia
 name: jenkins:proposed
 registry: docker-prod-local.artifactory.mirantis.com/mirantis/cicd
 target registry: apt:5000/mirantis/cicd

Note

The target_registry parameter specifies which registry the images will be pushed into.

2. Synchronize the Docker registry:

salt '<offline_node_name>' state.sls docker.client.registry

To customize the Git repositories mirrors

The Git repositories are defined as a repository list that includes a name and URL for each Git repository.

1. Customize the Git repositories list depending on the needs of your MCP deployment.

Note

Starting from the MCP Build ID 2019.2.0, the default list of repositories per release is defined in default_local_mirrror_content:git_server_repos.

Customization example in infra/mirror/init.yml:

```
git:
    server:
    directory: /srv/git/
    repos:
        - name: mk-pipelines
        url: https://github.com/Mirantis/mk-pipelines.git
        - name: pipeline-library
        url: https://github.com/Mirantis/pipeline-library.git
```

2. Synchronize the Git repositories:

```
salt '<offline_node_name>' state.sls git.server
```

To customize the MAAS mirrors

The MAAS mirrors are defined as image sections that include bootloaders and packages. Usually, they should not be customized since they mirror the upstream MAAS repositories directly.

Note

Starting from the MCP Build ID 2019.2.0, the default list of the MAAS image sections per release is defined in default_local_mirror_content:maas_mirror_image_sections.

1. Inspect the default MAAS pillar structure in defaults/maas.yml on the system level of the Reclass model:

parameters:
param:
default_local_mirrror_content:
maas_mirror_image_sections:
bootloaders:
keyring : /usr/share/keyrings/ubuntu-cloudimage-keyring.gpg
upstream : \${_param:linux_system_repo_update_url}/maas-ephemeral-v3/
local_dir: /srv/http/\${_param:mcp_version}/maas-ephemeral-v3/
count: 1
i386 need for pxe
filters: ['arch~(i386 amd64)', 'os~(grub* pxelinux*)']
xenial:
keyring: /usr/share/keyrings/ubuntu-cloudimage-keyring.gpg
upstream : \${_param:linux_system_repo_update_url}/maas-ephemeral-v3/
local_dir: /srv/http/\${_param:mcp_version}/maas-ephemeral-v3/
count: 1
filters: ['release~(xenial)', 'arch~(amd64)', 'subarch~(generic hwe-16* ga-16*)']

2. In infra/mirror/init.yml, add the customizations under the maas:mirror:image:sections pillar.

Also, use this pillar to update the MAAS mirrors. For example:

```
maas:
mirror:
enabled: true
image:
sections: ${_param:default_local_mirrror_content:maas_mirror_image_sections}
```

3. Synchronize the MAAS repositories:

```
salt '<offline_node_name>' state.sls maas.mirror
```

To customize static binaries or images

Depending on the needs of your MCP deployment, you can customize the storage of the offline image static binaries, images, and other files.

Note

Starting from the MCP Build ID 2019.2.0, the static binaries are defined in default_local_mirrror_content:linux_system_file.

1. In infra/mirror/init.yml, add the required customizations under the linux:system:directory and linux:system:file pillars:

inux:
system:
directory:
/srv/http/custom-binaries:
user: www-data
group: www-data
mode : 755
makedirs: true
file:
new_image_file:
name : /srv/http/custom-binaries/custom-binary 1
source : < some source binary source >/custom-binary 1
hash : <some_source_binary_source>/custom-binary_1.md5</some_source_binary_source>

2. Synchronize the customized files locally:

salt '<offline node name>' state.sls linux.system.file

To customize the Aptly repositories mirrors

You can either customize the already existing mirrors content or specify any custom mirror required by your MCP deployment.

• To customize existing mirror sources:

The sources for existing mirrors can be configured to use different upstream.

Each Aptly mirror specification includes parameters that define their source on the system level of the Reclass model as well distribution, components, key URL, and GPG keys. To customize a mirror content, redefine these parameters as required.

An example of the apt.mirantis.com mirror specification:

```
_param:
mcp_version: stable
mirror_mirantis_openstack_xenial_extra_source: http://apt.mirantis.com/xenial/
mirror_mirantis_openstack_xenial_extra_distribution: ${_param:mcp_version}
```
mirror_mirantis_openstack_xenial_extra_components: extra mirror_mirantis_openstack_xenial_extra_key_url: "http://apt.mirantis.com/public.gpg" mirror_mirantis_openstack_xenial_extra_gpgkeys: - A76882D3
aptly:
server:
mirror:
mirantis_openstack_xenial_extra:
<pre>source: \${_param:mirror_mirantis_openstack_xenial_extra_source}</pre>
distribution: \${_param:mirror_mirantis_openstack_xenial_extra_distribution}
components : \${_param:mirror_mirantis_openstack_xenial_extra_components}
architectures: amd64
key_url : \${_param:mirror_mirantis_openstack_xenial_extra_key_url}
gpgkeys: \${_param:mirror_mirantis_openstack_xenial_extra_gpgkeys}
publisher:
component: extra
distributions:
- ubuntu-xenial/\${_param:mcp_version}

Note

You can find all mirrors and their parameters that can be overridden in the aptly/server/mirror section of the Reclass System Model.

• To add new mirrors, extend the aptly:server:mirror pillar of the model using the structure defined in the example above.

Note

The aptly:server:mirror:<REPO_NAME>:publisher parameter specifies how the custom repository will be published.

Example of a custom mirror specification:

aptly: server: mirror: my_custom_repo_main: source: http://my-custom-repo.com distribution: custom-dist components: main architectures: amd64

Create local mirrors manually

If you prefer to manually create local mirrors for your MCP deployment, refer to MCP Release Notes: Release artifacts for the list of repositories and artifacts required for an installation of MCP.

Warning

Perform the procedure below only in case you need a new downstream, self-hosted repository structure. To fetch and update the Mirantis mirrors, refer to Customize the prebuilt mirrors.

To manually create an Aptly-based local mirror:

- 1. Log in to the Salt Master node.
- 2. Identify where the container with the aptly service is running in the Docker Swarm cluster.

salt -C 'l@docker:swarm:role:master' cmd.run 'docker service ps aptly|head -n3'

- 3. Log in to the node where the container with the aptly service is running.
- 4. Open the console in the container with the aptly service:

docker exec -it <CONTAINER_ID> bash

5. In the console, import the public key that will be used to fetch the repository.

Note

The public keys are typically available in the root directory of the repository and are called Release.key or Release.gpg. Also, you can download the public key from the key server keys.gnupg.net.

gpg --no-default-keyring --keyring trustedkeys.gpg --keyserver keys.gnupg.net \
 --recv-keys <PUB_KEY_ID>

For example, for the apt.mirantis.com repository:

gpg --no-default-keyring --keyring trustedkeys.gpg --keyserver keys.gnupg.net \
 --recv-keys 24008509A76882D3

6. Create a local mirror for the specified repository:

Note

You can find the list of repositories in the Repository planning section of the MCP Reference Architecture guide.

aptly mirror create <LOCAL_MIRROR_NAME> <REMOTE_REPOSITORY> <DISTRIBUTION>

For example, for the http://apt.mirantis.com/xenial repository:

aptly mirror create local.apt.mirantis.xenial http://apt.mirantis.com/xenial stable

7. Update a local mirror:

aptly mirror update <LOCAL_MIRROR_NAME>

For example, for the local.apt.mirantis.xenial local mirror:

aptly mirror update local.apt.mirantis.xenial

8. Verify that the local mirror has been created:

aptly mirror show <LOCAL_MIRROR_NAME>

For example, for the local.apt.mirantis.xenial local mirror:

aptly mirror show local.apt.mirantis.xenial

Example of system response:

Name: local.apt.mirantis.xenial Status: In Update (PID 9167) Archive Root URL: http://apt.mirantis.com/xenial/ Distribution: stable Components: extra, mitaka, newton, oc31, oc311, oc32, oc323, oc40, oc666, ocata, salt, salt-latest Architectures: amd64 Download Sources: no Download .udebs: no Last update: never Information from release file: Architectures: amd64 Codename: stable Components: extra mitaka newton oc31 oc311 oc32 oc323 oc40 oc666 ocata salt salt-latest Date: Mon, 28 Aug 2017 14:12:39 UTC Description: Generated by aptly

Label: xenial stable Origin: xenial stable Suite: stable

- 9. In the Model Designer web UI, set the local_repositories parameter to True to enable using of local mirrors.
- 10 Add the local_repo_url parameter manually to classes/cluster/<cluster_name>/init.yml after . model generation.

Seealso

- Repository planning
- GitLab Repository Mirroring
- The aptly mirror

Enable authentication for Aptly repositories

This section describes how to enable authentication for Aptly repositories. In this case, access to Aptly API is restricted to anonymous users and granted through <aptly_user>:<aptly_user_password>.

Prior to enabling authentication, configure it through the installed proxy service such as NGINX or HAProxy:

- If Aptly is running on the offline node or in the non-Swarm mode, configure authentication through NGINX.
- Starting from the MCP 2019.2.7 maintenance update, if Aptly is running on the cid nodes, configure authentication through HAProxy.

Configure Aptly authentication through HAProxy

Note

This feature is available starting from the MCP 2019.2.7 maintenance update. Before using the feature, follow the steps described in Apply maintenance updates.

This section describes how to configure authentication for Aptly repositories through HAProxy if Aptly is running on the cid nodes.

To configure Aptly authentication through HAProxy:

- 1. Log in to the Salt Master node.
- 2. Verify that HAProxy is enabled on the node that runs Aptly API:

salt -C 'l@docker:client:stack:aptly' pillar.get haproxy:proxy:listen:aptly-api salt -C 'l@docker:client:stack:aptly' pillar.get haproxy:proxy:listen:aptly-public

3. If HAProxy is not enabled, include the following class to cluster/<cluster_name>/cicd/control/init.yml:

- system.haproxy.proxy.listen.cicd.aptly

4. In cluster/<cluster_name>/cicd/control/init.yml, add the following overrides:

```
haproxy:
proxy:
  userlist:
   aptly users:
    name: aptly users
    groups:
     - name: <user group name>
     - name: <user group name2>
    users:
     - name: <user name>
      password: <user password>
      groups: [ <user group name> ]
     - name: <user name2>
      password: <user password2>
      groups: [ <user group name2> ]
  listen:
   aptly-api:
    acl:
     auth reg: "http auth(${haproxy:proxy:userlist:aptly users:name})"
    http request:
```

```
- action: auth
    condition: 'if !auth_reg'
aptly-public:
    acl:
    auth_reg: "http_auth(${haproxy:proxy:userlist:aptly_users:name})"
    http_request:
    - action: auth
    condition: 'if !auth_reg'
```

For password, define the required password types depending on your needs:

• Add an insecure password and HAProxy will shadow it to the configuration file. For example:

```
users:

- name: user1

password: r00tme
```

• Add an insecure_password: True parameter and HAProxy will add the password as an insecure one to the configuration file. For example:

```
users:

- name: user2

password: r00tme

insecure_password: True
```

• Add a shadowed password and HAProxy will add it to the configuration file. For example:

```
users:

- name: user3

password: '$6$wf0xxoXj$VqoqozsTPpeKZtw6c7gl2CYyEXfOccdif1ZmJwDT1AMKYp/.JUTZcDiZthai3xN9CzDQex9ZUOf3nFMbCm/Oe.'

shadow_password: False
```

5. Apply the haproxy.proxy state on the Aptly API node:

salt -C 'l@docker:client:stack:aptly' state.apply haproxy.proxy

Once done, access to Aptly API is granted through <aptly_user>:<aptly_user_password>. Now, proceed to Enable authentication for Aptly repositories. Configure Aptly authentication through NGINX

This section describes how to configure authentication for Aptly repositories through NGINX if Aptly is running in the Swarm mode on the offline node or in the non-Swarm mode (as standalone processes).

To configure Aptly authentication through NGINX:

- 1. Log in to the Salt Master node.
- 2. Verify that NGINX is enabled on the node that runs Aptly API:
 - If Aptly runs on the offline node in the Swarm mode:

salt -C 'l@docker:client:stack:aptly' pillar.get nginx:server:enabled

• If Aptly runs in the non-Swarm mode:

salt -C 'l@aptly:server' pillar.get nginx:server:enabled

- 3. Open one of the following files for editing:
 - If Aptly runs on the offline node in the Swarm mode, use cluster/<cluster_name>/infra/apt.yml.
 - If Aptly runs in the non-Swarm mode, open the file with Aptly configuration on the cluster level.
- 4. If NGINX is not enabled or not configured through Salt for the offline node, include the following class on the cluster level for the node that runs Aptly:

- system.nginx.server.single

5. Configure the Aptly NGINX site using the example below. Correlate the port and host parameters.

Note

If Aptly runs in the non-Swarm mode, skip the aptly_public section in the NGINX site configuration.

nginx: server: user: aptly_user: enabled: true password: <aptly_user_password> htpasswd: .htpasswd_aptly site: aptly api: enabled: true **type**: nginx_proxy name: aptly_api auth: engine: basic htpasswd: .htpasswd aptly proxy: host: 127.0.0.1 **port**: 18084 protocol: http **size**: 1G host: name: <server_name>.<domain>.local **port**: 8080 aptly_public: enabled: true **type**: nginx proxy **name**: aptly_public auth: engine: basic htpasswd: .htpasswd aptly proxy: **host**: 127.0.0.1 **port**: 18085 protocol: http size: 1G host: name: <server name>.<domain>.local **port**: 80

6. Apply the nginx.server state on the Aptly API node:

• If Aptly runs on the offline node in the Swarm mode:

salt -C 'l@docker:client:stack:aptly' state.apply nginx.server

• If Aptly runs in the non-Swarm mode:

salt -C 'l@aptly:server' state.apply nginx.server

Once done, access to Aptly API is granted through <aptly_user>:<aptly_user_password>. Now, proceed to Enable authentication for Aptly repositories.

Enable authentication for Aptly repositories

After you have configured authentication through HAProxy or NGINX as described in Configure Aptly authentication through HAProxy or Configure Aptly authentication through NGINX, enable authentication for Aptly repositories.

To enable authentication for Aptly repositories:

- 1. Log in to the Salt Master node.
- 2. Select from the following options:
 - For MCP versions starting from 2019.2.7, specify the following parameters in the linux:system:repo pillar in cluster/<cluster_name>/infra/init.yml:

linux:
 system:
 common_repo_secured:
 user: aptly_user
 password: <aptly_user_password>
 secured_repos: ['all']

Specify all in the secured_repos parameter to enable authentication for all available repositories. To enable authentication for a list of repositories, specify them within secured_repos. For example:

```
linux:
system:
...
common_repo_secured:
   user: aptly_user
   password: <aptly_user_password>
   secured_repos: [ 'test1', 'test2' ]
   repo:
   test1:
   ...
   test2:
   ...
   test3:
   secure: False
   ...
```

In the example above, the test1 and test2 repositories will be secured. However, the repo parameter has precedence over common_repo_secured. Therefore, the test3 repository will not be secured.

• For MCP versions prior to 2019.2.7, specify the entire pillar structure in the configuration files of the Aptly repositories. For details, see Use secured sources for mirrors, repositories, and files.

For example:

```
linux:
 system:
  common repo secured:
   arch: deb
   protocol: http
   user: aptly user
   password: <aptly user password>
   distribution: stable
   component: main
  repo:
   test1:
    secure: true
    url: <mirror_address>/ubuntu
   test2:
    secure: true
    url: <mirror address>/ubuntu
```

3. Apply the new Linux repository configuration on the nodes that are using Aptly:

salt -C '<target_compound>' saltutil.sync_all
salt -C '<target_compound>' state.apply linux.system.repo

- 4. If you use MAAS, also enable authentication for Aptly repositories for MAAS:
 - 1. Obtain the Aptly repositories for MAAS. For example:

```
salt-call pillar.get _param:maas_region_main_archive
local:
    http://10.10.0.14/update/proposed//ubuntu/
salt-call pillar.get _param:maas_region_boot_sources_maas_ephemeral_v3_bs_url
local:
    http://10.10.0.14:8078/2019.2.0/maas-ephemeral-v3/
salt-call pillar.get maas:cluster:saltstack_repo_trusty
local:
    deb [arch=amd64] http://10.10.0.14/2019.2.0//saltstack-2017.7//trusty/ trusty main
salt-call pillar.get maas:cluster:saltstack_repo_xenial
local:
    deb [arch=amd64] http://10.10.0.14/2019.2.0//saltstack-2017.7//xenial/ xenial main
```

2. In the cluster/<name>/infra/maas.yml file, specify the following pillar using the obtained repositories and Aptly credentials. For example:

parameters: __param: maas_region_main_archive: http://aptly_user:<aptly_user_password>@10.10.0.14/update/proposed//ubuntu/ maas_region_boot_sources_maas_ephemeral_v3_bs_url: http://aptly_user:<aptly_user_password>@10.10.0.14:8078/2019.2.0/maas-ephemeral-v3/ maas: cluster: saltstack_repo_trusty: deb [arch=amd64] http://aptly_user:<aptly_user_password>@10.10.0.14/2019.2.0//saltstack-2017.7//trusty/ trusty main saltstack_repo_xenial: deb [arch=amd64] http://aptly_user:<aptly_user_password>@10.10.0.14/2019.2.0//saltstack-2017.7//xenial/ xenial main

3. Apply the MAAS configuration changes:

salt -C 'l@salt:master' saltutil.sync_all salt -C 'l@salt:master' state.sls maas

Configure PXE booting over UEFI

This section explains how to configure the Preboot Execution Environment (PXE) to boot a hardware server from the network over Unified Extensible Firmware Interface (UEFI), which details the interface between the platform firmware and the operating system at boot time.

During the manual MCP infrastructure deployment, the PXE boot takes place when you add new physical servers that are not yet loaded with an operating system to your deployment. The Foundation node is installed with all the necessary software from a virtual machine image. All other hardware servers are installed remotely by MAAS using PXE boot. If required, you can configure a server to boot from network over UEFI.

To configure the UEFI network boot:

- 1. Configure the server in BIOS to use UEFI on boot time:
 - 1. On the Advanced tab, set the Launch Storage OpROM policy option to UEFI only:

2. On the Boot tab, specify the UEFI network connection as the first boot device. For example:

Aptio :	Setup Utility <u>– Copy</u> right (C┡ 2012 American Megat	rends, Inc.
Main Advanced Eve	nt Logs IPMI Boot Security Save & Exit	
		Set Boot Priority.
Set Boot Priority		
1st Boot Device		
2nd Boot Device	[Network]	
3rd Boot Device	[Hard Disk:PO: ST2]	
4th Boot Device	[Disabled]	
5th Boot Device	[Disabled]	
6th Boot Device	[Disabled]	
	1st Boot Device	
▶ Add New Boot Option	CD/DVD	
▶ Delete Boot Option	Hard Disk:PO: ST2000NM0033–9ZM175	
	USB Hard Disk	
▶ Hard Disk Drive BBS	Removable	
▶ UEFI Boot Drive BBS	Network	lect Screen
	UEFI: IP4 Intel(R) I350 Gigabit Network Connect	ion lect Item
	Disabled	Select

2. During comissioning through MAAS, verify that the server uses UEFI. For example:

Please select boot device:

UEFI: IP4 Intel(R) I350 Gigabit Network Connection ubuntu (P0: ST2000NM0033-92M175) UEFI: Built-in EFI Shell UEFI: IP4 Intel(R) I350 Gigabit Network Connection UEFI: IP4 Intel(R) I350 Gigabit Network Connection ubuntu (P0: ST2000NM0033-92M175) P0: ST2000NM0033-92M175 Enter Setup

> ↑ and ↓ to move selection ENTER to select boot device ESC to boot using defaults

Note

If you perform standard PXE boot, the MAAS commissioning process will not recognize UEFI.

Seealso

• Provision physical nodes using MAAS

Manage kernel version

Note

This feature is available starting from the MCP 2019.2.7 maintenance update. Before using the feature, follow the steps described in Apply maintenance updates.

During a node provisioning, the default image kernel version is set by MAAS. If the node is not provisioned by MAAS, the kernel version is taken from the node image. However, you can manually configure the kernel version as required to control which kernel version to install.

To manage the kernel version:

- 1. Open your Git project repository with the Reclass model on the cluster level.
- In configuration files for the required nodes, specify the following example pillar. For example, use infra/config/init.yml for the cfg node and openstack/proxy.yml for the prx nodes.

linux:
system:
kernel:
type : generic
extra: true
headers: true
version : 4.15.0-65
hwe:
type : hwe
version : 16.04
kernel_version: 4.15.0.65

- 3. Select from the following options:
 - If you perform the changes before running an MCP cluster deployment or before adding new nodes, proceed with the cluster deployment since the changes apply automatically.
 - If you perform the changes after the MCP cluster deployment, apply the following states from the Salt Master node:

salt '*' saltutil.sync_all salt '*' state.sls linux.system.kernel

Add a custom disk layout per node in the MCP model

In MAAS, you can define the disk layout, either flat or Logical Volume Manager (LVM), as well as the partitioning schema per server. This section describes how to define these parameters in the MAAS section of the MCP model. The disk configuration applies during the deployment process. If you want to define the disk configuration after deployment, you can use salt-formula-linux that also has a capability to set up LVM partitioning. But the whole definition for each Volume Group must be either in the maas or linux section, since the linux state cannot override or extend an existing Volume Group created using MAAS but can create a new one.

Caution!

You can define the disk configuration in the model before the deployment starts. But be aware that enforcing of this configuration to MAAS using the salt state must be done after servers are commissioned and before they are deployed. Basically, maas.machines.storage works only if a server is in the READY state.

Caution!

The maas.machines.storage state overlaps with the linux.storage state. Therefore, we recommend using only one of them. If your deployment requires both, be aware that:

- The linux.storage configuration must match the maas.machines.storage configuration.
- MAAS may use an inexplicit mapping. For example, the following MAAS configuration will create an inexplicit mapping to sda1. And this specific sda1 device must be defined in the linux.storage configuration.

va0:		
type: lym		
devices		
devices.		
- Sua		

You can use several options to design the disk layout in a deployment depending on specific use cases. This section includes three most common examples that can be combined to get your desired configuration.

To define a different disk layout with custom parameters

The default layouts used by MAAS are flat and Logical Volume Manager (LVM). Flat layout creates a root partition on the first disk of a server. LVM creates a Volume Group on this partition with one volume per root. By default, in both types of disk layout, the entire space on the first disk is used. If you want to change this behavior, redefine the disk layout parameters.

The following examples illustrate a modified configuration of the default values for partition size as well as LVM names for Volume Group and Logical Volume:

• Flat layout:

maas:
 region:
 machines:
 server1:
 disk_layout:
 type: flat
 root_size: 10G #sda disk has more then 10G
 root_device: sda
 bootable_device: sda

• LVM layout:

```
maas:
    region:
    machines:
    server1:
    disk_layout:
    type: lvm
    root_size: 20G    #sda disk has more then 20G
    root_device: sda
    bootable_device: sda
    volume_group: vg0
    volume_name: root
    volume_size: 10G    #If not defined, whole root partition is used.
```

Caution!

When defining the disk layout in the model, do not modify the rest of the disk using the MAAS dashboard. Each run of maas.machines.storage deletes and recreates the disk configuration of a server. Currently, this state is not idempotent.

To define a custom partitioning schema

To define a more complex configuration for disks, use the disk section under the disk_layout parameter.

The following example illustrates how to create partitions on the sda disk and a Volume Group with Logical Volumes on the sdb disk. Be aware that sdb is also defined without any partitioning schema. Therefore, you can enforce no partition to be present on sdb. Also, due to the volume_group1 dependency on this device, it must be defined with some configuration in the model. In the example below, it has no partitioning schema.

Example of creating partitions and Logical Volumes:

```
maas:
 region:
  machines:
   server3:
    disk layout:
     type: custom
     bootable device: sda
     disk:
      sda:
        type: physical
        partition schema:
         part1:
          size: 10G
          type: ext4
          mount: '/'
         part2:
          size: 2G
         part3:
          size: 3G
      sdb:
        type: physical
      volume group1:
       type: lvm
        devices:
         - sdb
        volume:
         tmp:
          size: 5G
          type: ext4
          mount: '/tmp'
         log:
          size: 7G
          type: ext4
          mount: '/var/log'
```

Caution!

The naming convention for partition in MAAS does not allow using custom names. Therefore, key names in YAML for partition are always part1, part2, ..., partN.

To define the software RAID

Using the disk section from the previous example, you can create the software RAID on servers. You can use this device for LVM or you can define a partitioning schema directly on this device.

The following example illustrates how to create raid 1 on sda and sdb with the partitioning schema. In this example, we use flat layout that creates a root partition on sda, but this partition is eventually deleted because sda is defined without any partitioning schema.

Example of creating the software RAID disks:

maas: region: machines: server3: disk layout: type: custom bootable device: sda disk: sda: type: physical sdb: type: physical **md0**: type: raid **level**: 1 devices: - sda - sdb partition schema: part1: **size**: 10G type: ext4 mount: '/' part2: **size**: 5G part3: size: 25G

To apply changes to MAAS

To enforce the disk configuration on servers in MAAS, run the maas state on a node where the MAAS model is included. Usually, this is the cfg01 node.

salt-call state.sls maas.machines.storage

Now, proceed with the MCP deployment depending on your use case as described in Provision physical nodes using MAAS.

Enable NTP authentication

This section describes how to enable Network Time Protocol (NTP) authentication in a deployment model and apply it to your environment.

To configure authentication for NTP:

- 1. Log in to the Salt Master node.
- 2. Create the classes/cluster/<cluster_name>/infra/ntp_auth.yml file with the following configuration as an example:

```
ntp:
 client:
  enabled: true
  auth:
   enabled: true
   secrets:
    1:
     secret_type: 'M'
     secret: '<Runrabbitrundigthath>'
     trustedkey: true
    2:
     secret type: 'M'
     secret: '<Howiwishyouwereherew>'
     trustedkey: true
  stratum:
   primary:
    server: <ntp1.example.com>
    key id: 1
   secondary:
    server: <ntp2.example.com>
    key id: 2
```

In the secrets and stratum sections, specify your own keys and strata servers accordingly.

The key_id parameter for each strata server represents the id of a secret from the secrets section.

The above configuration example enables authentication for two servers. For a specific use case, see README.rst at NTP Salt formula.

3. In the classes/cluster/<cluster_name>/infra/init.yml file, include the following class to distribute the settings across all nodes:

```
classes:
- cluster.<cluster_name>.infra.ntp_auth
```

4. Apply the ntp state on the Salt Master node:

salt '*' state.sls ntp

Seealso

- ntp-genkeys
- MCP Operations Guide: Configure multiple NTP servers

Enable a watchdog

This section describes how to enable a watchdog in your MCP cluster and applies to both existing and new MCP deployments.

Note

This feature is available as technical preview. Use such configuration for testing and evaluation purposes only.

The watchdog detects and recovers servers from serious malfunctions which can include hardware faults as well as program errors. While operating normally, the server resets the watchdog preventing it from generating a timeout signal. Otherwise, the watchdog initiates corrective actions to restore the normal operation of a system.

This functionality can be implemented through either a watchdog timer, which is a hardware device, or a software-only softdog driver.

To install and configure the watchdog:

- 1. Log in to the Salt Master node.
- 2. In the classes/cluster/<cluster_name>/init.yml or classes/cluster/<cluster_name>/init/init.yml file of your Reclass model, include the following class:

classes:

- system.watchdog.server

3. In the classes/cluster/<cluster_name>/infra/config.yml file of your Reclass model, add the watchdog server configuration. For example:

vatchdog: server: admin: root enabled: true interval: 1 log_dir: /var/log/watchdog realtime: yes timeout: 60 device: /dev/watchdog	
 # Salt Stack will automatically detect the necessary kernel module # which needs to be loaded (ex. hpwdt, iTCO_wdt). # If the hardware model is not predefined in map.jinja, the default # watchdog driver is used: softdog # You may specify the kernel module parameters if needed: kernel: 	

parameter: soft_panic: 1 parameter: value parameter_only_without_value: none

- 4. Select from the following options:
 - If you are performing the initial deployment of your environment, the watchdog service will be installed during the Finalize stage of the Deploy OpenStack pipeline. See Deploy an OpenStack environment for details.
 - If you are enabling the watchdog service in an existing environment, apply the changes to the deployment model to install the service:

```
salt \* state.sls watchdog
```

5. Verify that the watchdog service is enabled in your deployment:

```
salt \* cmd.run "service watchdog status"
```

Enable the Linux Audit system

The Linux Audit system enables the system administrator to track security-relevant events by creating an audit trail, which is a log for every action on the server. More specifically, based on the pre-configured rules, the audit system creates log entries that record system calls. By monitoring the events happening on your system, you can reveal violations of system security policies and adjust the set of audit rules to prevent further misuse or unauthorized activities within the system.

This section describes how to enable the audit system in your MCP deployment in compliance with CIS audit benchmarks and applies to both existing and new MCP deployments. Once you enable the audit system, the Fluentd service of StackLight LMA collects the audit logs and sends them to Elasticsearch for storage.

To enable the Linux Audit system:

- 1. Log in to the Salt Master node.
- 2. In the classes/cluster/<cluster_name>/infra/init.yml file of your Reclass model, include the following class:

- 3. If required, configure the CIS-CAT rules depending on the needs of your deployment.
- 4. Select from the following options:
 - If you are performing the initial deployment of your environment, the auditd service will be installed during the MCP cluster deployment.
 - If you are enabling the auditd service in an existing environment:
 - 1. Refresh pillars and synchronize Salt modules:

salt '*' saltutil.refresh_pillar
salt '*' saltutil.sync_modules

2. Apply the salt state:

salt '*' state.sls salt

3. Apply the changes to the Reclass model by running the auditd state:

salt * state.sls auditd

5. Verify that the auditd service is enabled in your deployment:

salt * service.status auditd

6. Verify that the rules are being applied as expected using the auditctl tool:

salt * cmd.run "auditctl -l"

Configure a company name for the SSH and interactive logon disclaimer

On an SSH and interactive logon to the MCP VCP nodes, a security disclaimer displays. The disclaimer states that an unauthorized access to or misuse of a computer system is prohibited under the Computer Misuse Act 1990.

Note

The act is designed to protect computer users against wilful attacks and theft of information. The act makes it an offence to access or even attempt to access a computer system without the appropriate authorization. Therefore, if a hacker makes even unsuccessful attempts to get into a system, they can be prosecuted using this law.

This section provides an instruction on how to configure the company name managing the computer from which the operator is required to have authorization before proceeding.

To configure the company name in the logon disclaimer:

- 1. Log in to the Salt Master node.
- 2. Configure the company name for the SSH logon by specifying the company name in the classes/cluster/<cluster_name>/openssh/server/single.yml file in your Reclass model:

classes:

- service.openssh.server
- service.openssh.server.cis

```
parameters:
_param:
_ssh_banner_company_name: COMPANY_NAME
```

3. Configure the company name for the interactive logon by specifying the company name in the classes/cluster/<cluster_name>/linux/system/banner.yml file in your Reclass model:

```
parameters:
_param:
banner_company_name: COMPANY_NAME_HERE
```

4. Apply the changes:

salt -C 'l@salt:control' state.sls openssh.server.service linux.system

Now, the logon disclaimer should display the configured company name.

Configure secure SSH ciphers

For security and compliance purposes, the following SSH ciphers are disabled in MCP:

- arcfour
- arcfour128
- arcfour256

The default ciphers can be changed in the classes/cluster/<cluster_name>/openssh/server/single.yml file of your Reclass model to satisfy the cluster needs. Mirantis highly recommends adjusting the cipher suites according to compliance requirements as well as applying and testing the changes on staging environments first.

The structure with enabled ciphers from openssh/server/single.yml is converted to a comma-separated string in /etc/ssh/sshd_config. For a list of all supported ciphers, inspect man sshd_config.5 on any node of your MCP cluster.

Warning

The following instruction can potentially lead to security or compliance issues on your cluster. Therefore, proceed at your own risk.

To configure SSH ciphers:

- 1. Log in to the Salt Master node.
- 2. In the classes/cluster/<cluster_name>/openssh/server/single.yml file of your Reclass model, add the supported SSH ciphers under the ciphers parameter as follows:

```
parameters:
openssh:
server:
ciphers:
"<cipher_name>":
enabled: True
```

The following SSH ciphers are enabled by default in MCP:

```
parameters:
openssh:
server:
ciphers:
"3des-cbc":
enabled: True
"aes128-cbc":
enabled: True
```

"aes192-cbc": enabled: True "aes256-cbc": enabled: True "aes128-ctr": enabled: True "aes192-ctr": enabled: True "aes256-ctr": enabled: True "aes128-gcm@openssh.com": enabled: True "aes256-gcm@openssh.com": enabled: True "chacha20-poly1305@openssh.com": enabled: True "rijndael-cbc@lysator.liu.se": enabled: True

3. Apply the changes:

salt -C 'l@salt:control' state.sls openssh.server.service linux.system

Set custom Transmit Queue Length

The Transmit Queue Length (txqueuelen) is a TCP/IP stack network interface value that sets the number of packets allowed per kernel transmit queue of a network interface device.

By default, the txqueuelen value for TAP interfaces is set to 1000 in the MCP Build ID 2019.2.0 and to 10000 in the MCP 2019.2.3 maintenance update. You can also tune the txqueuelen value for TAP interfaces to optimize VM network performance under high load in certain scenarios.

To set a custom Transmit Queue Length value for TAP interfaces:

- 1. Log in to the Salt Master node.
- 2. Set the tap_custom_txqueuelen parameter for the OpenContrail or OVS compute nodes in one of the following files as required:
 - For the OpenContrail compute nodes, modify the cluster/<cluster_name>/opencontrail/networking/compute.yml file.
 - For the OVS compute nodes, modify the cluster/<cluster_name>/openstack/networking/compute.yml file.

Example:

```
linux:
network:
...
tap_custom_txqueuelen: 20000
```

3. Apply the change:

salt '*' state.sls linux

- 4. Verify that the txqueuelen value has changed:
 - 1. Log in to the target node.
 - 2. Verify the output of the ifconfig <interface_name>. The txqueuelen value should equal the newly set value.

Configure a CPU model

The Compute service enables you to control the guest host CPU model that is exposed to KVM virtual machines. The use cases include:

- Maximization of performance of virtual machines by exposing new host CPU features to the guest
- Ensuring a consistent default CPU value across all machines by removing the reliance on the QEMU variable default values

You can define the CPU model for your deployment by setting the cpu_mode parameter on the Reclass cluster level. A universal default value for this parameter does not exist as the configuration depends a lot on a particular use case, workload needs, and compute hardware. Therefore, picking up the value for the cpu_mode parameter is worth careful consideration.

The supported values include:

host-model

Clone the host CPU feature flags

host-passthrough

Use the host CPU model

custom

Use the CPU model defined with [libvirt]cpu_model

none

Do not set a specific CPU model. For example, with the [libvirt] virt_type as KVM/QEMU, the default CPU model from QEMU will be used providing a basic set of CPU features that are compatible with most hosts

The cpu_mode parameter directly affects the possibility of performing the VM migration. To be able to migrate a VM from one compute host to another one, the destination host must support the CPU flags of the guest host. If a cloud environment is running on a heterogeneous hardware, the cpu_mode parameter should be set to custom. Though, such configuration will decrease the workload performance.

Starting from the MCP maintenance update 2019.2.10, you can use the custom CpuFlagsFilter Nova scheduler filter. The filter works only for live migrations and ensures that the CPU features of a live migration source host match the target host. Use the CpuFlagsFilter filter only if your deployment meets the following criteria:

- The CPU mode is set to host-passthrough or host-model.
- The OpenStack compute nodes have heterogeneous CPUs.
- The OpenStack compute nodes are not organized in aggregates with the same CPU in each aggregate.

Configure Galera parameters

This section provides an instruction on how to configure the parameters of the MySQL my.cnf configuration file by overriding them on the cluster level of the Reclass model.

Note

The capability to configure the tmp_table_size, max_heap_table_size, and table_open_cache parameters is available starting from the 2019.2.5 maintenance update. To enable the feature, follow the steps described in Apply maintenance updates.

To configure parameters of the MySQL configuration file:

- 1. Open your project Git repository with the Reclass model on the cluster level.
- 2. In cluster/<cluster_name>/openstack/database/init.yml, define the following parameters as required. The available values for <role> are master or slave.

Warning

The following list may be not exhaustive.

Section	Galera parameter	Pillar parameter key name
[mysql]	ssl-ca	galera: <role>:ssl:ca_file¹</role>
	ssl-cert	galera: <role>:ssl:cert_file ¹</role>
	ssl-key	galera: <role>:ssl:key_file¹</role>
[mysqld]	bind-address	galera: <role>:bind:address</role>
	max_connections	galera: <role>:max_connections</role>
	log_error	galera: <role>:error_log_path²</role>
	table_open_cache	galera: <role>:table_open_cache</role>
	tmp_table_size	galera: <role>:tmp_table_size</role>
	max_heap_table_size	galera: <role>:max_heap_table_size</role>
	innodb_buffer_pool_size	galera: <role>:innodb_buffer_pool_size</role>
	innodb_read_io_threads	galera: <role>:innodb_read_io_threads</role>
	innodb_write_io_threads	galera: <role>:innodb_write_io_threads</role>
	wsrep_provider	galera: <role>:wsrep_provider</role>

Galera configurable parameters

	wsrep_slave_threads	galera: <role>:wsrep_slave_threads</role>
	wsrep_sst_auth	(galera: <role>:sst:user):(galera:<role>:sst :password)³</role></role>
	wsrep_node_address	galera: <role>:bind:address</role>
[xtrabac kup]	parallel	galera: <role>:xtrabackup_parallel</role>

For example:

	paramete galera: slave: bind: addre	rs: ess: 127.0.0.1
1(<mark>1</mark> ,	2, 3)	Requires galera: <role>:ssl:enabled == true.</role>
2		Requires galera: <role>:error_log_enabled == true.</role>
3		The parameter is concatenated from two pillar values.

Configure HAProxy parameters

Note

This feature is available starting from the MCP 2019.2.5 maintenance update. Before enabling the feature, follow the steps described in Apply maintenance updates.

This section provides an instruction on how to configure the parameters of the HAProxy configuration file by overriding them on the cluster level of the Reclass model. For the list of all available global parameters, see the official HAProxy documentation.

To configure global parameters of the HAProxy configuration file:

- 1. Open your project Git repository with the Reclass model on the cluster level.
- 2. In cluster/<cluster_name>/openstack/init.yml, define the parameters in the global section using the haproxy:proxy:global pillar and the following pattern:
 - parameters: haproxy: proxy: global: <key>: <value>

In the configuration above, <key> is any required parameter and <value> is its value that can be a number, string, or boolean. Replace all dot . signs in the parameter key names with undescores _ in the pillar definiton. For example, the tune.ssl.cachesize parameter must be tune_ssl_cachesize in the pillar configuration.

Example configuration:

parameters: haproxy: proxy: global: tune_ssl_cachesize: 4

Some keys in the global configuration have dedicated configurable pillar keys in the pillar structure and are kept for the backward compatibility. If both parameters are defined, the one from haproxy:proxy:global pillar has higher priority and overwrites any other values. For example, the nbproc value can be defined with both haproxy:proxy:nbproc and haproxy:proxy:global:nbproc parameters.

The timeout values are assumed to be defined in ms if no other unit is specifically defined. For details, see HAProxy documentation.

Use secured sources for mirrors, repositories, and files

Note

This feature is available starting from the MCP 2019.2.5 maintenance update. Before enabling the feature, follow the steps described in Apply maintenance updates.

This section provides an instruction on how to configure your cluster model if you plan to download Debian packages, Git mirrors, VM images, or any files required for cluster deployment from a secured HTTP/HTTPS server that can be accessible through login credentials. Such functionality may be required for offline installations when internal mirrors are secured.

If the source HTTP/HTTPS server is secured, the source or url parameters should still include the user ID and password, for example, http://user:password@example.mirantis.com/xenial. Previously, MCP did not enable you to use encrypted pillar inside another variable. Starting from MCP 2019.2.5, you can use a secured HTTP/HTTPS server even if the secrets encryption feature in Reclass is enabled as described in Enable all secrets encryption.

Warning

We recommend that you apply the procedure before the cluster deployment to avoid the cluster breakdown and to automatically apply the changes.

To define secured APT repositories on the cluster nodes:

Note

The exemplary default structure of the APT repositories definition in the cluster model:

linux: system: repo: repo-example: source: 'deb http://example.com/ubuntu xenial main'

• Define a secured APT repository, for example:

linux: system: repo:
repo-example: secure: true url: example.com/ubuntu arch: deb protocol: http user: foo password: bar distribution: xenial component: main

• Define the APT repositories in case of several APT repositories under the same HTTP/HTTPS secured server with the same credentials. The exemplary structure:

linux: system: common_repo_secured: arch: deb protocol: http user: foo password: bar distribution: xenial **component**: main repo: test1: secure: true **url**: example1.com/ubuntu test2: secure: true url: example2.com/ubuntu

Warning

We do not recommend that you apply the changes after the MCP cluster deployment. Though, on your own responsibility, you can apply the changes as follows:

- 1. Log in to the Salt Master node.
- 2. Run:

salt '*' saltutil.refresh_pillar salt '*' state.apply linux.system.repo

To define a secured file source on cluster nodes:

Define a secured file source, for example:

```
linux:
system:
file:
sample3.tar.gz:
name: /tmp/sample3.tar.gz
secured_source:
protocol: http #optional
user: username
password: password
url: wordpress.org/latest.tar.gz
secured_hash: #optional
url: wordpress.org/latest.tar.gz.md5
```

Warning

We do not recommend that you apply the changes after the MCP cluster deployment. Though, on your own responsibility, you can apply the changes as follows:

- 1. Log in to the Salt Master node.
- 2. Run:

salt '*' saltutil.refresh_pillar salt '*' state.apply linux.system.repo

To define a secured image source on cluster nodes:

Note

The exemplary default structure of the image sources definition in cluster model:

salt:
 control:
 cluster:
 cluster-name:
 node:
 node1:
 provider: node01.domain.com
 size: medium
 image: http://ubuntu.com/download/ubuntu.qcow2

• Define a secured image sources. The exemplary structure:

salt:
control:
cluster:
cluster-name:
node:
node1:
<pre>provider: node01.domain.com</pre>
size: medium
image_source:
secured: true
protocol: http
user: foo
password: bar
url_prefix : ubuntu.com/download
url_path: ubuntu.qcow2
·

• Define the image sources in case of several images from the same HTTP/HTTPS secured server with the same credentials. The exemplary structure:

```
salt:
    control:
    common_image_source:
    protocol: http
    user: foo
    password: bar
    url_prefix: ubuntu.com/download
    cluster:
    cluster-name:
    node:
```

node1: provider: node01.domain.com size: medium image_source: secured: true url_path: ubuntu-xenial.qcow2 node2: provider: node02.domain.com size: medium image_source: secured: true url path: ubuntu-bionic.qcow2

Warning

Do not apply the changes after the MCP cluster deployment to avoid the cluster breakdown.

To define a secured Git repositories source for CI/CD nodes:

1. Update the configuration of the Gerrit project source:

```
Note

The exemplary default structure of the Gerrit project sources in cluster model:

gerrit:

client:

enabled: True

project:

test_salt_project:

enabled: true

upstream: https://github.com/example/library
```

Define a secured Gerrit project source, fore example:

```
gerrit:

client:

enabled: True

project:

test_salt_project:

enabled: true
```

upstream_secured: true protocol: https username: foo password: bar address: github.com/example/library

- 2. If the target Gerrit repositories are any of mcp-ci/pipeline-library or mk/mk-pipelines, or they are required for the pipelines execution in Jenkins, add the Jenkins login credentials:
 - 1. Navigate to the root folder of your cluster model. On the Salt Master node, this is the /srv/salt/reclass directory.
 - 2. Add the following parameters into ./classes/cluster/<cluster_name>/infra/config/jenkins.yml for Jenkins on the Salt Master node and ./classes/cluster/<cluster_name>/cicd/control/leader.yml for Jenkins on the CI/CD nodes:

parameters: _param: source_git_username: <ENCRYPTED_USERNAME> source_git_password: <ENCRYPTED_PASSWORD>

3. Include the system.jenkins.client.credential.source_git class into same files for both Jenkins instances:

classes:

...

- system.jenkins.client.credential.source_git

Warning

We do not recommend that you apply the changes after the MCP cluster deployment. Though, on your own responsibility, you can apply the changes as follows:

- 1. Log in to the Salt Master node.
- 2. Refresh the pillars:

salt -C 'l@gerrit:client' saltutil.refresh_pillar salt -C 'l@jenkins:client' saltutil.refresh_pillar

3. Apply the gerrit and jenkins states:

salt -C 'l@gerrit:client' state.apply gerrit.client
salt -C 'l@jenkins:client' state.apply jenkins.client

Advanced configuration

MCP exposes a number of advanced configuration options.

Enable NFV features

Network Functions Virtualization (NFV) is a powerful technology that leverages virtualization of particular network functions which allows a better flexibility in network administration and enables you to use network hardware more efficiently.

MCP supports the following NFV features:

- Data Plane Development Kit or DPDK is a set of libraries and drivers to perform fast packet processing in the user space that OVS/vRouter can use to move network packets processing from a kernel to a user space. OVS/vRouter with DPDK acceleration on compute nodes reduces the processing time of network packets transferred between a host's network interface and a guest bypassing the host's kernel. Moreover, DPDK leverages benefits of usage of other technologies such as Huge Pages, CPU pinning, and NUMA topology scheduling.
- SR-IOV is an extension to the PCI Express (PCIe) specification that enables a network adapter to separate access to its resources among various PCIe hardware functions: Physical Function (PF) and Virtual Functions (VFs). As a result, you can achieve near bare-metal performance, since network devices can forward traffic directly to a VF bypassing the host.
- Multiqueue for DPDK-based vrouters enables the scaling of packet sending/receiving processing to the number of available vCPUs of a guest by using multiple queues.

The following table shows compatibility matrix for MCP of NFV features for different deployments.

Туре	Host OS	Kern el	HugePa ges	DPD K	SR-I OV	NUM A	CPU pinning	Multiqueue
OVS	Xenial	4.8	Yes	No	Yes	Yes	Yes	Yes
Kernel vRouter	Xenial	4.8	Yes	No	Yes	Yes	Yes	Yes
DPDK vRouter	Trusty	4.4	Yes	Yes	No	Yes	Yes	No (version 3.2)
DPDK OVS	Xenial	4.8	Yes	Yes	No	Yes	Yes	Yes

NFV for MCP compatibility matrix

Enable DPDK

Enabling Data Plane Development Kit (DPDK) strongly requires Huge Pages configuration before an application start. To perform fast packet processing, a DPDK-based network application may require to use isolated CPUs and resources spread on the multi-NUMA topology. These configurations are common for both OVS and OpenContrail.

Warning

Before you proceed with the DPDK enabling, verify that you have performed the following procedures:

- 1. Enable Huge Pages
- 2. Configure NUMA and CPU pinning architecture

Limitations

The usage of the OVS DPDK or OpenContrail DPDK features in MCP includes the following limitations.

OVS DPDK limitations:

- OVS DPDK can be used only for tenant traffic
- Compute with DPDK cannot be used for non-DPDK workload
- When deployed with StackLight LMA, the libvirt_domain_interface_stats_* metrics are not available

OpenContrail DPDK limitations:

 When deployed with StackLight LMA, the libvirt_domain_interface_stats_* metrics are not available

Enable OVS DPDK

This section explains how to prepare for and enable OVS DPDK in MCP.

Warning

Before you proceed with the DPDK enabling, verify that you have performed the following procedures:

- 1. Enable Huge Pages
- 2. Configure NUMA and CPU pinning architecture

Prepare your environment for OVS DPDK

This section describes the initialization steps needed to prepare your deployment for the enablement of the OVS DPDK feature.

Warning

Before you proceed with the DPDK enabling, verify that you have performed the following procedures:

- 1. Enable Huge Pages
- 2. Configure NUMA and CPU pinning architecture

To prepare your environment for OVS DPDK:

1. Specify the DPDK driver.

DPDK Environment Abstract Layer(EAL) uses either Userspace I/O (UIO) module or VFIO to provide userspace access on low-level buffers. MCP supports both configurations.

Note

To use VFIO approach, verify that both kernel and BIOS are configured to use I/O virtualization. This requirement is similar to SR-IOV Intel IOMMU and VT-d being enabled.

To use one of Userspace I/O drivers, define the compute_dpdk_driver parameter. For example:

compute_dpdk_driver: uio # vfio

2. In respect to the parameter specified above, configure the DPDK physical driver. There is one-to-one dependency of what driver must be selected for physical DPDK NIC based on the configured I/O mechanism. For example:

dpdk0:

driver: igb_uio # vfio-pci

3. To enable the physical DPDK device to run several RX/TX queues for better packet processing, configure the following parameter specifying the number of queues to be used. For example:

dpdk0:

...

n_rxq: 2 # number of RX/TX queues

Note

The increasing number of queues results in PMD threads consuming more cycles to serve physical device. We strongly recommend that you configure the number of physical queues not greater that CPUs configured for the DPDK-based application.

Enable OVS DPDK support

Before you proceed with the procedure, verify that you have performed the preparatory steps described in Prepare your environment for OVS DPDK.

While enabling DPDK for Neutron Open vSwitch, you can configure a number of settings specific to your environment that assist in optimizing your network performance, such as manual pinning and others.

To enable OVS DPDK:

1. Verify your NUMA nodes on the host operating system to see what vCPUs are available. For example:

Iscpu | grep NUMA NUMA node(s): 1 NUMA node0 CPU(s): 0-11

- 2. Include the class to cluster.<name>.openstack.compute and configure the dpdk0 interface. Select from the following options:
 - Single interface NIC dedicated for DPDK:

```
- system.neutron.compute.nfv.dpdk
parameters:
 linux:
  network:
   interfaces:
     # other interface setup
    dpdk0:
      name: ${_param:dpdk0_name}
      pci: ${ param:dpdk0 pci}
      driver: igb uio
      enabled: true
      type: dpdk ovs port
      n rxq: 2
     br-prv:
      enabled: true
      type: dpdk_ovs_bridge
```

OVS DPDK bond with 2 dedicated NICs

... - system.neutron.compute.nfv.dpdk ... parameters: linux: network: interfaces: *#* other interface setup dpdk0: name: \${ param:dpdk0 name} pci: \${ param:dpdk0 pci} driver: igb_uio bond: dpdkbond1 enabled: true type: dpdk_ovs_port n rxq: 2 dpdk1: name: \${_param:dpdk1_name} pci: \${_param:dpdk1_pci} driver: igb uio bond: dpdkbond1 enabled: true type: dpdk ovs port n rxq: 2 dpdkbond1: enabled: true bridge: br-prv type: dpdk ovs bond mode: active-backup br-prv: enabled: true type: dpdk ovs bridge

3. Calculate the hexadecimal coremask.

As well as for OpenContrail, OVS-DPDK needs logical cores parameter to be set. Open vSwitch requires two parameters: lcore mask to DPDK processes and PMD mask to spawn threads for poll-mode packet processing drivers. Both parameters must be calculated respectively to isolated CPUs and are representing hexadecimal numbers. For example, if we need to take single CPU number 2 for Open vSwitch and 4 CPUs with numbers 5, 6, 10 and 12 for forwarding PMD threads, we need to populate parameters below with the following numbers:

• The lcores mask example:

- 4. Define the parameters in the cluster.<name>.openstack.init if they are the same for all compute nodes. Otherwise, specify them in cluster.<name>.infra.config:
 - dpdk0_name

Name of port being added to OVS bridge

dpdk0_pci

PCI ID of physical device being added as a DPDK physical interface

compute_dpdk_driver

Kernel module to provide userspace I/O support

- compute_ovs_pmd_cpu_mask
 Hexadecimal mask of CPUs to run DPDK Poll-mode drivers
- compute_ovs_dpdk_socket_mem

Set of amount HugePages in Megabytes to be used by OVS-DPDK daemon taken for each NUMA node. Set size is equal to NUMA nodes count, elements are divided by comma

- compute_ovs_dpdk_lcore_mask Hexadecimal mask of DPDK lcore parameter used to run DPDK processes
- compute_ovs_memory_channels

Number of memory channels to be used.

Example

```
compute_dpdk_driver: uio
compute_ovs_pmd_cpu_mask: "0x6"
compute_ovs_dpdk_socket_mem: "1024"
compute_ovs_dpdk_lcore_mask: "0x400"
compute_ovs_memory_channels: "2"
```

5. Optionally, map the port RX queues to specific CPU cores.

Configuring port queue pinning manually may help to achieve maximum network performance through matching the ports that run specific workloads with specific CPU cores. Each port can process a certain number of Transmit and Receive (RX/TX) operations, therefore it is up to the Network Administrator to decide on the most efficient port mapping. Keeping a constant polling rate on some performance critical ports is essential in achieving best possible performance.

Example

dpdk0:

pmd rxg affinity: "0:1,1:2"

The example above illustrates pinning of the queue 0 to core 1 and pinning of the queue 1 to core 2, where cores are taken in accordance with pmd_cpu_mask.

6. Specify the MAC address and in some cases PCI for every node.

Example

openstack_compute_node02: name: \${_param:openstack_compute_node02_hostname} domain: \${_param:cluster_domain} classes: - cluster.\${_param:cluster_name}.openstack.compute params: salt_master_host: \${_param:reclass_config_master} linux_system_codename: xenial dpdk0_name: enp5s0f1 dpdk1_name: enp5s0f2 dpdk0_pci: ''0000:05:00.1''' dpdk1 pci: ''0000:05:00.2'''

7. If the VXLAN neutron tenant type is selected, set the local IP address on br-prv for VXLAN tunnel termination:

```
...
- system.neutron.compute.nfv.dpdk
...
parameters:
linux:
network:
interfaces:
...
# other interface setup
...
br-prv:
enabled: true
type: dpdk_ovs_bridge
address: ${_param:tenant_address}
netmask: 255.255.255.0
```

- 8. Select from the following options:
 - If you are performing the initial deployment of your environment, proceed with further environment configurations.
 - If you are making changes to an existing environment, re-run salt configuration on the Salt Master node:

salt "cmp*" state.sls linux.network,neutron

Note

For the changes to take effect, servers require a reboot.

9. If you need to set different values for each compute node, define them in cluster.<NAME>.infra.config.

Example

openstack compute node02: name: \${_param:openstack_compute node02 hostname} domain: \${ param:cluster domain} classes: - cluster.\${ param:cluster name}.openstack.compute params: salt master host: \${ param:reclass config master} linux system codename: xenial dpdk0 name: enp5s0f1 dpdk1 name: enp5s0f2 dpdk0 pci: "0000:05:00.1" dpdk1 pci: "0000:05:00.2" compute dpdk driver: uio compute ovs pmd cpu mask: "0x6" compute ovs dpdk socket mem: "1024" compute ovs dpdk lcore mask: "0x400" compute ovs memory channels: "2"

Enable OpenContrail DPDK

OpenContrail 4.x uses DPDK libraries version 17.02.

Caution!

Starting from OpenContrail version 4.x, the Mellanox NICs are not supported in the DPDK-based OpenContrail deployments.

A workload running on a DPDK vRouter does not provide better pps if an application is not DPDK-aware. The performance result is the same as for kernel vRouter.

To enable the OpenContrail DPDK pinning:

- 1. Verify that you have performed the following procedures:
 - 1. Enable Huge Pages
 - 2. Configure NUMA and CPU pinning architecture
- 2. Verify your NUMA nodes on the host operating system to identify the available vCPUs. For example:

```
Iscpu | grep NUMA
NUMA node(s): 1
NUMA node0 CPU(s): 0-11
```

3. Include the following class to cluster.<name>.openstack.compute and configure the vhost0 interface:

```
classes:
...

    system.opencontrail.compute.dpdk

...
parameters:
 linux:
  network:
   interfaces:
    # other interface setup
    ...
    vhost0:
      enabled: true
     type: eth
      address: ${ param:single address}
      netmask: 255.255.255.0
      name servers:
```

```
- 8.8.8.8
- 1.1.1.1
```

- 4. Set the parameters in cluster.<name>.openstack.init on all compute nodes:
 - compute_vrouter_taskset

Hexadecimal mask of CPUs used for DPDK-vRouter processes

compute_vrouter_socket_mem

Set of amount HugePages in Megabytes to be used by vRouter-DPDK taken for each NUMA node. Set size is equal to NUMA nodes count, elements are divided by comma

compute_vrouter_dpdk_pci

PCI of a DPDK NIC. In case of BOND there must be 0000:00:00.0

5. Calculate the hexadecimal mask. To enhance vRouter with DPDK technology, several isolated host CPUs should be used for such DPDK processes as statistics, queue management, memory management, and poll-mode drivers. To perform this, you need to configure the hexadecimal mask of CPUs to be consumed by vRouter-DPDK.

The way to calculate the hexadecimal mask is simple as a set of CPUs corresponds to the bits sequence size of CPUs number. 0 on i-th place in this sequence means that CPU number i will not be taken for usage, and 1 has the opposite meaning. Simple translation of binary-to-hexadecimal based on bit sequence of size 24 is illustrated below (vRouter is bound to 4 cores: 14,13,2,1.)

6. Pass the hexadecimal mask to vRouter-DPDK command line using the following parameters. For example:

compute_vrouter_taskset: "-c 1,2" # or hexadecimal 0x6 compute_vrouter_socket_mem: '1024' # or '1024,1024' for 2 NUMA nodes

7. Specify the MAC address and in some cases PCI for every node.

Example

```
openstack_compute_node02:
name: ${_param:openstack_compute_node02_hostname}
domain: ${_param:cluster_domain}
classes:
- cluster.${_param:cluster_name}.openstack.compute
params:
salt_master_host: ${_param:reclass_config_master}
linux_system_codename: trusty
compute_vrouter_dpdk_mac_address: 00:1b:21:87:21:99
```

compute_vrouter_dpdk_pci: "'0000:05:00.1'"
primary_first_nic: enp5s0f1 # NIC for vRouter bind

- 8. Select from the following options:
 - If you are performing the initial deployment of your environment, proceed with the further environment configurations.
 - If you are making changes to an existing environment, re-run salt configuration on the Salt Master node:

salt "cmp*" state.sls opencontrail

Note

For the changes to take effect, servers require a reboot.

9. If you need to set different values for each compute node, define them in cluster.<NAME>.infra.config.

Example

openstack_compute_node02: name: \${_param:openstack_compute_node02_hostname} domain: \${_param:cluster_domain} classes: - cluster.\${_param:cluster_name}.openstack.compute params: salt_master_host: \${_param:reclass_config_master} linux_system_codename: trusty compute_vrouter_dpdk_mac_address: 00:1b:21:87:21:99 compute_vrouter_dpdk_pci: "'0000:05:00.1'" compute_vrouter_taskset: "-c 1,2" compute_vrouter_socket_mem: "1024" primary_first_nic: enp5s0f1 # NIC for vRouter bind

Enable SR-IOV

Single Root I/O Virtualization (SR-IOV) is an I/O virtualization technology that allows a single PCIe device to appear as multiple PCIe devices. This helps to optimize the device performance and capacity, as well as hardware costs.

Prerequisites

If you want to use the SR-IOV feature with OpenContrail or Neutron OVS, your environment must meet the following prerequisites:

- Intel Virtualization Technology for Directed I/O (VT-d) and Active State Power Management (ASPM) must be supported and enabled in BIOS
- Physical NIC with Virtual Function (VF) driver installed Enable ASPM (Active State Power Management) of PCI Devices in BIOS. If required, upgrade BIOS to see ASPM option.

Enable generic SR-IOV configuration

The following procedure is common for both OpenVSwitch and OpenContrail. SR-IOV can be enabled before or after installation on the MCP cluster model level.

To enable SR-IOV:

1. Include the class to cluster.<NAME>.openstack.compute:

- system.neutron.compute.nfv.sriov

Note

By default, the metadata model contains configuration for 1 NIC dedicated for SR-IOV.

2. Set the following parameters:

sriov_nic01_device_name

Name of the interface, where the Virtual Functions are enabled

- sriov_nic01_numvfs
 Number of Virtual Functions
- sriov_nic01_physical_network
 Default is physnet1, label for the physical network the interface belongs to
- sriov_unsafe_interrupts

Default is False, needs to be set to True if your hardware platform does not support interrupt remapping

For most deployments with 1 NIC for SR-IOV, we recommend the following configuration in cluster.<name>.openstack.init on all compute nodes:

sriov_nic01_device_name: eth1
sriov_nic01_numvfs: 7
sriov_nic01_physical_network: physnet3

3. If you need to set different values for each compute node, specify them in cluster.<name>.infra.config.

Example

openstack_compute_node02: name: \${_param:openstack_compute_node02_hostname} domain: \${_param:cluster_domain} classes: - cluster.\${_param:cluster_name}.openstack.compute params: salt_master_host: \${_param:reclass_config_master}
linux_system_codename: xenial
sriov_nic01_device_name: eth1
sriov_nic01_numvfs: 7
sriov_nic01_physical_network: physnet3

4. If your hardware does not support interrupt remapping, set the following parameter:

```
sriov_unsafe_interrupts: True
```

5. If you need more than one NIC on a compute node, set the following parameters in cluster.<NAME>.openstack.compute.

Example

... nova: compute: sriov: sriov nic01: devname: eth1 physical network: physnet3 sriov nic02: devname: eth2 physical network: physnet4 sriov nic03: devname: eth3 physical network: physnet5 sriov nic04: devname: eth4 physical network: physnet6 linux: system: kernel: sriov: True unsafe interrupts: False sysfs: sriov numvfs: class/net/eth1/device/sriov numvfs: 7 class/net/eth2/device/sriov numvfs: 15 class/net/eth3/device/sriov numvfs: 15 class/net/eth4/device/sriov numvfs: 7

6. Enable the kernel boot parameter for the OpenStack compute node:

linux: system: kernel: boot_options: - intel_iommu=on

- 7. Select from the following options:
 - If you are performing the initial deployment of your environment, proceed with the further environment configurations.
 - If you are making changes to an existing environment:
 - 1. Run the virt-host-validate command from an OpenStack compute node to ensure that it is ready for SR-IOV.
 - 2. Re-run the salt configuration on the Salt Master node:

```
salt "cmp*" state.sls linux,nova
```

3. Reboot the OpenStack compute nodes one by one as described in MCP Operations Guide: Reboot a compute node.

Configure SR-IOV with OpenContrail

Since OpenContrail does not use Neutron SR-IOV agents, it does not require any special changes on the Neutron side. Port configuration can be done through the Neutron APIs or the OpenContrail UI.

Configure SR-IOV with OpenVSwitch

Neutron OVS requires enabling of the sriovnicswitch mechanism driver on the Neutron server side and the neutron-sriov-nic-agent running on each compute node with this feature enabled.

To configure SR-IOV with OpenVSwitch:

1. Include the class to cluster.<NAME>.openstack.compute:

- system.neutron.compute.nfv.sriov

Note

By default, the metadata model contains configuration for 1 NIC dedicated for SR-IOV.

2. Include the class to cluster.<NAME>.openstack.control:

- system.neutron.control.openvswitch.sriov

3. If you need more than 1 NIC, extend the previous configuration by extra Neutron cluster.<NAME>.openstack.compute.

Example

neutron:
compute:
backend:
sriov:
sriov nic01:
devname: eth1
nhysical network nhysnet3
sriov nic02:
devname: eth2
nbysical notwork: nbysnot4
physical_network. physilet4
snov_nicu3:
devname: eth3
physical_network: physnet5
sriov_nic04:
devname: eth4
physical_network: physnet6

Create instances with SR-IOV ports

To enable the SR-IOV support, you must create virtual instances with SR-IOV ports.

To create virtual instances with SR-IOV ports:

1. Create a network and a subnet with a segmentation ID. For example:

```
neutron net-create --provider:physical_network=physnet3 \
    --provider:segmentation_id=100 net04
neutron subnet-create net04 a.b.c.d/netmask
```

2. Request the ID of the Neutron network where you want the SR-IOV port to be created. For example:

net_id=`neutron net-show net04 | grep "\ id\ " | awk '{ print \$4 }'`

3. Create an SR-IOV port with one of the available VNIC driver types that are direct, normal, direct-physical, and macvtap:

```
port_id=`neutron port-create $net_id --name sriov_port \
    --binding:vnic_type direct | grep "\ id\ " | awk '{ print $4 }'`
```

4. Create a virtual instance with the SR-IOV port created in step 3:

```
nova boot --flavor m1.large --image ubuntu_14.04 --nic port-id=$port_id test-sriov
```

Seealso

Using SR-IOV functionality in the official OpenStack documentation

Seealso

Enable Multiqueue

Enable Huge Pages

Huge Pages is a technology that supports 2MB and 1GB size memory pages. Huge Pages reduces time to access data stored in the memory by using bigger memory pages, which leads to fewer page entries to look up by CPU when choosing a page associated with a current process. Use of Huge Pages is beneficial in operations and processes that require large amount of memory.

Warning

Verify that CPU supports HugePages before you proceed.

Enable the Huge Pages support

This section exaplains how to configure the support for the Huge Pages feature in your MCP depoyment.

To enable Huge Pages:

- 1. Log in to the host machine.
- 2. To verify that CPU supports Huge Pages, analyze the system response of the following command:

cat /proc/cpuinfo

In the system output, search for the parameters:

- PSE support of 2MB hugepages
- PDPE1GB support of 1GB hugepages
- 3. Include the class in cluster.<name>.openstack.compute:

- system.nova.compute.nfv.hugepages

4. Set the parameters in cluster.<name>.openstack.init on all compute nodes:

```
compute_hugepages_size: 1G # or 2M
compute_hugepages_count: 40
compute_hugepages_mount: /mnt/hugepages_1G # or /mnt/hugepages_2M
```

- 5. Select from the following options:
 - If you are performing the initial deployment your environment, proceed with the further environment configurations.
 - If you are making changes to an existing environment, re-run the salt configuration on the Salt Master node:

```
salt "cmp*" state.sls linux,nova
```

- 6. Reboot the affected servers.
- 7. If you need to set different values for each compute node, define them in cluster.<name>.infra.config for each node.

Example:

```
openstack_compute_node02:
name: ${_param:openstack_compute_node02_hostname}
domain: ${_param:cluster_domain}
classes:
- cluster.${_param:cluster_name}.openstack.compute
```

params: salt_master_host: \${_param:reclass_config_master} linux_system_codename: xenial compute_hugepages_size: 1G # or 2M compute_hugepages_count: 40 compute_hugepages_mount: /mnt/hugepages_1G # or /mnt/hugepages_2M

Seealso

Boot a virtual machine with Huge Pages

Boot a virtual machine with Huge Pages

This section explains how to boot a VM with Huge Pages.

To boot a virtual machine with Huge Pages:

1. Create a new flavor or use an existing one to use with Huge Pages. To create a new image flavor:

. openrc admin admin nova flavor-create huge 999 1024 4 1

2. Add the size of huge pages to the image flavor:

nova flavor-key huge set hw:mem_page_size=2048

3. Verify the image flavor exists:

nova flavor-show huge

Example of system response

+ Property	+ Value	+
OS-FLV-DISABLED:c OS-FLV-EXT-DATA:e disk	disabled False ephemeral 0 4	+
extra_specs id name	{"hw:mem_pa 7 huge	age_size": "2048"}
os-flavor-access:is_ ram rxtx_factor	public True 1024 1.0	
swap vcpus	 1	'

4. Create a new image or use an existing image. You need an Ubuntu image and the default Cirros image.

To create a new Ubuntu image:

glance --os-image-api-version 1 image-create --name ubuntu \ --location https://cloud-images.ubuntu.com/trusty/current/trusty-server-cloudimg-amd64-disk1.img \ --disk-format qcow2 --container-format bare

5. Boot a new instance using the created flavor:

nova boot --flavor huge --image ubuntu inst1

6. Verify that the new VM uses 512 huge pages:

grep Huge /proc/meminfo

Example of system response

AnonHugePages: 1138688 kB HugePages_Total: 1024 HugePages_Free: 512 HugePages_Rsvd: 0 HugePages_Surp: 0 Hugepagesize: 2048 kB

Configure NUMA and CPU pinning architecture

NUMA and CPU pinning is a shared memory architecture that describes the placement of main memory modules on processors in a multiprocessor system. You can leverage NUMA when you have data strongly associated with certain tasks or users. In such case, CPU can use its local memory module to access data reducing access time.

NUMA usage is beneficial on particular workloads, for example, on configurations where data is often associated with certain tasks or users.

Enable NUMA and CPU pinning

Before you proceed with enabling DPDK in your deployment, the NUMA and CPU pinning enablement is required.

To enable NUMA and CPU pinning:

1. Verify your NUMA nodes on the host operating system:

lscpu | grep NUMA

Example of system response

```
NUMA node(s): 1
NUMA node0 CPU(s): 0-11
```

2. Include the class to cluster.<NAME>.openstack.compute:

```
- system.nova.compute.nfv.cpu_pinning
```

- 3. Set the parameters in cluster.<name>.openstack.init on all compute nodes:
 - compute_kernel_isolcpu

Set of host CPUs to be isolated from system. Kernel will not assign internal processes on this set of CPUs. This parameter is configured in grub

nova_cpu_pinning

Subset of CPUs isolated on previous step. This parameter is used by Nova to run VMs only on isolated CPUs with dedicated pinning. Nova vCPU pinning set is configured in the nova.conf file after system isolates appropriate CPUs

Example

```
nova_cpu_pinning: "1,2,3,4,5,7,8,9,10,11"
compute_kernel_isolcpu: ${_param:nova_cpu_pinning}
```

- 4. Select from the following options:
 - If you are performing the initial deployment, proceed with the further environment configurations.
 - If you are making changes to an existing environment, re-run the salt configuration on the Salt Master node:

salt "cmp*" state.sls linux,nova
Note

To take effect, servers require a reboot.

5. If you need to set different values for each compute node, define them in cluster.<name>.infra.config.

Example

openstack_compute_node02: name: \${_param:openstack_compute_node02_hostname} domain: \${_param:cluster_domain} classes: - cluster.\${_param:cluster_name}.openstack.compute params: salt_master_host: \${_param:reclass_config_master} linux_system_codename: xenial nova_cpu_pinning: "1,2,3,4,5,7,8,9,10,11" compute_kernel_isolcpu: "1,2,3,4,5,7,8,9,10,11"

Boot a VM with two NUMA nodes

This example demonstrates booting a VM with two NUMA nodes.

To boot VM with two NUMA nodes:

1. Create a new flavor or use an existing one to use with NUMA. To create a new flavor, run:

. openrc admin admin nova flavor-create m1.numa 999 1024 5 4

2. Add numa_nodes to the flavor.

Note

vCPUs and RAM will be divided equally between the NUMA nodes.

nova flavor-key m1.numa set hw:numa_nodes=2 nova flavor-show m1.numa

Example of system response:

+	+	+ I
+	+	ا ++
OS-FLV-DISABLE	D:disabled Fa	alse l
OS-FLV-EXT-DATA:ephemeral 0		
disk	5	
extra_specs	{"hw:nu	ma_nodes": "2"}
id	999	
name	m1.numa	
os-flavor-access:is_public True		
ram	1024	
rxtx_factor	1.0	
swap		
vcpus	4	
+	+	+

3. Create a new image or use an existing image.

Note

You need an Ubuntu image and the default Cirros image.

To create a new Ubuntu image:

```
glance --os-image-api-version 1 image-create --name ubuntu \
--location https://cloud-images.ubuntu.com/trusty/current/\
trusty-server-cloudimg-amd64-disk1.img \
--disk-format gcow2 --container-format bare
```

- 4. To enable SSH connections:
 - 1. Add a new rule to the security group:

nova secgroup-add-rule default tcp 22 22 0.0.0.0/0

2. Create a new SSH key pair or use the existing key pair. To create a new ssh key pair:

ssh-keygen

3. Add the key pair to Nova:

nova keypair-add --pub_key ~/.ssh/id_rsa.pub my_kp

5. Verify free memory before you boot the VM:

numactl -H

Example of system response:

available: 2 nodes (0-1) node 0 cpus: 0 1 node 0 size: 3856 MB node 0 free: 718 MB node 1 cpus: 2 3 node 1 size: 3937 MB node 1 free: 337 MB node distances: node 0 1 0: 10 20 1: 20 10

6. Boot a new instance using the created flavor:

nova boot --flavor m1.numa --image ubuntu --key-name my_kp inst1

7. Verify if free memory has been changed after booting the VM:

numactl -H

Example of system response:

```
available: 2 nodes (0-1)

node 0 cpus: 0 1

node 0 size: 3856 MB

node 0 free: 293 MB  # was 718 MB

node 1 cpus: 2 3

node 1 size: 3937 MB

node 1 free: 81 MB  # was 337 MB

node distances:

node 0 1

0: 10 20

1: 20 10
```

8. Retrieve the instance's IP:

nova show inst1 | awk '/network/ {print \$5}'

Example of system response:

10.0.0.2

9. Connect to the VM using SSH:

ssh ubuntu@10.0.0.2

10 Install numactl:

sudo apt-get install numactl

11 Verify the NUMA topology on the VM:

numactl -H

Example of system response:

available: 2 nodes (0-1) node 0 cpus: 0 1 node 0 size: 489 MB node 0 free: 393 MB node 1 cpus: 2 3 node 1 size: 503 MB node 1 free: 323 MB node distances: node 0 1 0: 10 20 1: 20 10

Boot a VM with CPU and memory pinning

This example demonstrates booting VM with CPU and memory pinning.

To boot VM with CPU and memory pining:

1. Create a new flavor with specific division of vCPUs and RAM between the NUMA nodes:

. openrc admin admin nova flavor-create m1.numa 2 9992 1024 5 4

2. Add numa_nodes and other specific options to the flavor:

nova flavor-key m1.numa_2 set hw:numa_nodes=2 hw:numa_cpus.0=0,2 \
 hw:numa_cpus.1=1,3 hw:numa_mem.0=324 hw:numa_mem.1=700
nova flavor-show m1.numa_2 | grep extra

Example of system response:

| extra_specs | {"hw:numa_cpus.0": "0,2", "hw:numa_cpus.1": "1,3", \
"hw:numa nodes": "2", "hw:numa mem.1": "700", "hw:numa mem.0": "324"} |

3. Create a new image or use an existing image.

Note

You need an Ubuntu image or the default Cirros image.

To create a new Ubuntu image:

glance --os-image-api-version 1 image-create --name ubuntu \ --location https://cloud-images.ubuntu.com/trusty/current/\ trusty-server-cloudimg-amd64-disk1.img \ --disk-format qcow2 --container-format bare

- 4. To enable SSH connections:
 - 1. Add a new rule to the security group:

nova secgroup-add-rule default tcp 22 22 0.0.0.0/0

2. Create a new SSH key pair or use the existing key pair. To create a new ssh key pair, run:

ssh-keygen

3. Add the key pair to Nova:

nova keypair-add --pub_key ~/.ssh/id_rsa.pub my_kp

5. Boot a new instance using the created flavor:

nova boot --flavor m1.numa_2 --image ubuntu --key-name my_kp inst2

6. Verify if free memory has been changed after booting the VM:

numactl -H

Example of system response:

```
available: 2 nodes (0-1)

node 0 cpus: 0 1

node 0 size: 3856 MB

node 0 free: 293 MB  # was 718 MB

node 1 cpus: 2 3

node 1 size: 3937 MB

node 1 free: 81 MB  # was 337 MB

node distances:

node 0 1

0: 10 20

1: 20 10
```

7. Retrieve the instance's IP:

nova show inst2 | awk '/network/ {print \$5}'

Example of system response:

10.0.0.3

8. Connect to the VM using SSH:

ssh ubuntu@10.0.0.3

9. Install numactl:

sudo apt-get install numactl

10 Verify the NUMA topology on the VM:

numactl -H

Example of system response:

available: 2 nodes (0-1) node 0 cpus: 0 2 node 0 size: 303 MB node 0 free: 92 MB node 1 cpus: 1 3 node 1 size: 689 MB node 1 free: 629 MB node distances: node 0 1 0: 10 20 1: 20 10

You can see that the NUMA topology has two NUMA nodes. Total RAM size is about 1GB:

- node-0 CPUs are 0 and 2
- node-1 CPUs are 1 and 3, node-1 RAM is about 324 MB
- node-2 RAM is about 700 as specified in the m1.numa_2 flavor

Enable Multiqueue

The MCP Multiqueue enables the scaling of packet sending/receiving processing to the number of available vCPUs of a guest by using multiple queues. The feature includes:

• Multiqueue for DPDK-based vrouters

Is supported by OpenVSwitch only. Underlay configuration for OVS is a part of DPDK interfaces and is defined by the n_rxq parameter. For example:

```
...
- system.neutron.compute.nfv.dpdk
...
parameters:
 linux:
  network:
   interfaces:
     # other interface setup
     . . .
    dpdk0:
      name: ${_param:dpdk0_name}
      pci: ${_param:dpdk0_pci}
      driver: igb uio
      bond: dpdkbond1
      enabled: true
      type: dpdk_ovs_port
      n rxq: 2
     dpdk1:
      name: ${ param:dpdk1 name}
      pci: ${_param:dpdk1_pci}
      driver: igb uio
      bond: dpdkbond1
      enabled: true
      type: dpdk_ovs_port
      n rxq: 2
```

Multiqueue Virtio

Is supported by OpenContrail and OVS

Provision a VM with Multiqueue

To provision a VM with Multiqueue:

1. Set the image metadata property with the Multiqueue enabled:

nova image-meta <IMAGE_NAME> set hw_vif_multiqueue_enabled="true"

2. After the VM is spawned, use the following command on the virtio interface in the guest to enable multiple queues inside the VM:

ethtool -L <INTERFACE_NAME> combined <#queues>

Configure load balancing with OpenStack Octavia

You can use the OpenStack Octavia service to provide advanced load balancing in your OpenStack environment. For the Octavia architecture details and limitations, see: MCP Reference Architecture: Plan load balancing with OpenStack Octavia.

You can enable Octavia before or after you have an operational OpenStack environment with Neutron OVS as a networking solution deployed by MCP.

Enable Octavia on a new OpenStack environment

You can enable Octavia before deploying an OpenStack-based MCP cluster and automatically deploy it together with other OpenStack components using the dedicated Jenkins pipeline.

To enable Octavia on a new OpenStack environment:

- 1. While generating a deployment metadata model for your new OpenStack-based MCP cluster as described in Create a deployment metadata model, select the following parameters in the Model Designer web UI:
 - OVS as a networking engine in the Infrastructure parameters section
 - Openstack octavia enabled in the Product parameters section
 - For MCP versions starting from the 2019.2.8 maintenance update:
 - To use the amphora HA mode, set Octavia amphora topology to ACTIVE_STANDBY
 - To use a spare amphorae pool for the Octavia load balancer, set the required pool size in Octavia spare amphora pool size
 - If you need TLS support with Barbican, select Barbican enabled in the Product parameters section
 - TECHNICAL PREVIEW If you want to enable Octavia Cluster Manager, select Octavia Cluster Manager in the Product parameters section
- Proceed with further cluster configuration as required. Octavia will be deployed during your OpenStack environment deployment by the dedicated Jenkins pipeline. For the deployment details, see: Deploy an OpenStack environment.

Seealso

Example of a load balancing topology

Enable Octavia on an existing OpenStack environment

You can enable Octavia on an operational OpenStack environment with Neutron OVS as a networking solution deployed by MCP.

To enable Octavia on an existing OpenStack environment:

- 1. Log in to the Salt Master node.
- 2. Add the following class to cluster/<cluster_name>/openstack/database.yml:

- system.galera.server.database.octavia

- 3. Add the following classes to cluster/<cluster_name>/openstack/control/init.yml:
 - system.keystone.client.service.octavia
 - system.glance.client.image.octavia
 - system.nova.client.service.octavia
 - system.octavia.client
- 4. Select from the following options:
 - To run Octavia worker services in a cluster, add the following class to cluster/<cluster_name>/openstack/control/init.yml:

- system.neutron.client.service.octavia

• To run a single instance of Octavia worker services, add the following class to cluster/<cluster_name>/openstack/control/init.yml:

- system.neutron.client.service.octavia.single

- 5. If Barbican support is required, add the following classes to cluster/<cluster_name>/openstack/control/init.yml:
 - system.barbican.client.v1.octavia
 - system.barbican.client.v1.signed_images.octavia
 - system.salt.minion.cert.octavia.image_sign

Caution!

If signing of images is disabled for Nova, do not add the images-related classes.

6. Add the following classes to cluster/<cluster_name>/openstack/control.yml:

system.neutron.control.openvswitch.octaviasystem.octavia.api.cluster

- system.octavia.api.cluste

Note

Starting the OpenStack Queens release, the system.neutron.control.openvswitch.octavia class is not required.

The system.octavia.api.cluster class configures an Octavia API cluster to run on the OpenStack controller nodes. Alternatively, if you want to run a single instance of Octavia API, add the following class instead:

- system.octavia.api.single

7. In cluster/<cluster_name>/infra/config.yml, configure the Octavia Manager services (Controller Worker, Health Manager, and Housekeeping) to run on one of the gateway nodes that is gtw01 by default:

• Add the following classes:

- system.salt.minion.ca.octavia_amphora_ca

- system.salt.minion.cert.octavia.amphora_cluster_client

• If you run the OpenStack gateway services in a cluster, add the following class:

- system.reclass.storage.system.openstack_gateway_single_octavia

before

- system.reclass.storage.system.openstack_gateway_cluster

• If you run the OpenStack gateway services in a single mode, add the following class:

- system.reclass.storage.system.openstack_gateway_single_octavia

before

- system.reclass.storage.system.openstack_gateway_single

• TECHNICAL PREVIEW If you want to add Octavia Cluster Manager, also add the following class:

- system.reclass.storage.system.openstack_gateway_cluster_octavia

- 8. Verify the classes and parameters:
 - 1. Verify that the cluster/<cluster_name>/openstack/octavia_manager.yml file exists and contains import of the following classes as well as a private key that will be used to log in to amphorae. For example:

```
classes:

    system.octavia.manager.single

- system.salt.minion.ca.octavia ca
- system.salt.minion.cert.octavia.amphora client
parameters:
 _param:
  cluster local address: ${ param:single address}
  octavia_private kev: |
   -----BEGIN RSA PRIVATE KEY-----
   MIIEpAIBAAKCAQEAtinPDJsQToHBtogIo15mdSYpfi8z6DFMi8Gbo0KCN33OUn5u
   OctbdtjUfeuhvI6px1SCnvyWi09Ft8eWwq+KwLCGKbUxLvqKltuJ7K3LIrGXkt+m
   qZN4O9XKeVKfZH+mQWkkxRWgX2r8RKNV3GkdNtd74VjhP+R6XSKJQ1Z8b7eHM10v
   6IjTY/jPczjK+eyCeEj4qbSnV8eKlqLhhquuSQRmUO2DRSjLVdpdf2BB4/BdWFsD
   YOmX7mb8kpEr9vQ+c1JKMXDwD6ehzyU8kE+1kVm5zOeEy4HdYIMpvUfN49P1anRV
   2ISQ1ZE+r22IAMKI0tekrGH0e/1NP1DF5rINMwIDAQABAoIBAQCkP/cgpaRNHyg8
   ISKIHs67SWgdEm73G3ijgB+JSKmW2w7dzJgN//6xYUAnP/zIuM7PnJ0gMQyBBTMS
   NBTv5spqZLKJZYivi6Tb1Ya8jupKm0jEWIMfBo2ZYVrfgFmrfGOfEebSvmuPlh9M
   vuzlftmWVSSUOkjODmM9D6QpzgrbpktBuA/WpX+6esMTwJpOcQ5xZWEnHXnVzuTc
   SncodVweE4gz6F1qorbqIJz8UAUQ5T0OZTdHzIS1IbamACHWaxQfixAO2s4+BoUK
   ANGGZWkfneCxx7lthvY8DiKn7M5cSRngFyDToGgaLezdkMNIGC7v3U11FF5bISEW
   fL1o/HwBAoGBAOavhTr8eqezTchqZvarorFlq7HFWk/l0vgulotu6/wlh1V/KdF+
   aLLHgPgJ5j+RrCMvTBoKqMeeHfVGrS2udEy8L1mK6b3meG+tMxU05OA55abmhYn7
   7vF0q8XImYIHIXmuCqF90R8Piscb0eaMImHW9unKTKo8EOs5i+D8+AMIAoGBAMo4
   8WW+D3XiD7fsymsfXalf7VpAt/H834QTbNZJweUWhg11eLutyahyyfjjHV200nNZ
   cnU09DWKpBbLg7d1pyT69CNLXpNnxuWCt8oiUjhWCUpNqVm2nDJbUdlRFTzYb2fS
   ZC4r0oQaPD5kMLSipjcwzMWe0PniySxNvKXKInFbAoGBAKxW2gD7uKKKuQSOQUft
   aAksMmEIAHWKTDdvOA2VG6XvX5DHBLXmy08s7rPfgW06ZjCPCDq4Velzvgvc9koX
   d/IP6cvglL9za+x6p5wiPO4rEt/CfmdcmOE4eY+1EgLrUt314LHGjjG3ScWAiirE
   QyDrGOIGaYoQf89L3KqIMr0JAoGARYAklw8nSSCUvmXHe+Gf0yKA9M/haG28dCwo
   780RsqZ3FBEXmYk1EYvCFqQX56jJ25MWX2n/tJcdpifz8Q2ikHcfiTHSI187YI34
   IKQPFgWb08m1NnwoWrY//yx63BqWz1vjymqNQ5GwutC8XJi5/6Xp+tGGiRuEgJGH
   EIPUKpkCgYAjBIVMkpNiLCREZ6b+qjrPV96ed3iTUt7TqP7yGIFI/OkORFS38xqC
   hBP6Fk8iNWuOWQD+ohM/vMMnvlhk5jwlcwn+kF0ra04gi5KBFWSh/ddWMJxUtPC1
   2htvlEc6zQAR6QfqXHmwhg1hP81JcpqpicQzCMhkzLoR1DC6stXdLg==
   -----END RSA PRIVATE KEY-----
```

The private key is saved to /etc/octavia/.ssh/octavia_ssh_key on the Octavia manager node.

Note

To generate an SSH key pair, run:

ssh-keygen -b 2048 -t rsa -N "" -f ~/.ssh/octavia_ssh_key

2. To use a spare amphorae pool for the Octavia load balancer, specify the spare_amphora_pool_size parameter as required.

```
octavia:
manager:
house_keeping:
spare_amphora_pool_size: 0
```

9. Verify that the following Octavia parameters are configured in cluster/<cluster_name>/openstack/init.yml. For example:

```
parameters:
_param:
  octavia version: ${ param:openstack version}
  octavia service host: ${ param:openstack control address}
  mysgl octavia password: <db password>
  keystone octavia password: <keystone password>
  amp flavor id: <amphora-flavor-id>
  octavia health manager node01 address: 192.168.0.10
  # If clusterization enaled:
  # octavia health manager node02 address: 192.168.0.11
  # octavia health manager node03 address: 192.168.0.12
  octavia loadbalancer topology: "SINGLE"
  octavia public key: |
   ssh-rsa AAAAB3NzaC1yc2EAAAADAQABAAABAQC2Oc8MmxBOgcG2ioijXmZ1J
   il+LzPoMUyLwZujQol3fc5Sfm45y1t22NR966G8jqnHVIKe/JaLT0W3x5bCr4
   rAslYptTEu+ogW24nsrcsisZeS36apk3q71cp5Up9kf6ZBaSTFFaBfavxEo1X
   caR0213vhWOE/5HpdIoIDVnxvt4czXS/oiNNj+M9zOMr57IJ4SPiptKdXx4qW
   ouGGq65IBGZQ7YNFKMtV2I1/YEHi8F1YWwNq6ZfuZvySkSv29D5zUkoxcPAPp
   6HPJTyQT7WRWbnM54TLgd1ggym9R83j0/VqdFXYhJDVkT6vbYgAwqXS16SsYf
   R7/U0/UMXmsg0z root@cfg01
```

- The parameter octavia_public_key should contain a public key generated in the previous step. In our example, it is taken from ~/.ssh/octavia_ssh_key.pub.
- To use the amphora HA mode, set octavia_loadbalancer_topology to ACTIVE_STANDBY. By default, octavia_loadbalancer_topology is set to SINGLE to use the default load balancer topology.
- 10 Optional. Override the default Octavia parameters in . cluster/<cluster_name>/openstack/octavia_manager.yml. The default parameters are as follows:

parameters: octavia: manager: certificates: ca private key: '/etc/octavia/certs/private/cakey.pem' ca certificate: '/etc/octavia/certs/ca 01.pem' controller worker: amp_flavor_id: \${ param:amp flavor id} amp image tag: amphora amp ssh key name: octavia ssh key loadbalancer topology: 'SINGLE' haproxy amphora: client cert: '/etc/octavia/certs/client.pem' client cert key: '/etc/octavia/certs/client.key' client_cert_all: '/etc/octavia/certs/client all.pem' server_ca: '/etc/octavia/certs/ca 01.pem' health manager: bind_ip: \${_param:octavia hm bind ip} heartbeat key: 'insecure' house keeping: spare amphora pool size: 0

Note

Starting from MCP 2019.2.7 maintenance update, haproxy_amphora includes the build_rate_limit parameter, set to 2 by default. Use the parameter to configure the build rate limit for the Octavia manager.

11 Add the configured Octavia roles to the corresponding nodes:

salt-call state.sls reclass.storage

12 Refresh pillars:

salt '*' saltutil.refresh_pillar

13 Update the Salt Minion configuration:

salt-call state.sls salt.minion.service

14 Create the Octavia database:

salt -C 'l@galera:master' state.sls galera salt -C 'l@galera:slave' state.sls galera -b 1

15 Configure HAProxy for Octavia API:

salt -C 'l@haproxy:proxy' state.sls haproxy

16 Configure NGINX proxy for Octavia API:

salt -C 'l@nginx:server' state.sls nginx

17 Create an Octavia user and endpoints in Keystone:

salt -C 'l@keystone:client' state.sls keystone.client

18 Upload an amphora image to Glance:

salt -C 'l@glance:client' state.sls glance.client

19 Create an amphora flavor and a key pair in Nova:

salt -C 'l@nova:client' state.sls nova.client

This state expects you to provide an SSH key that is used to create a key pair.

20 Create the Neutron resources for Octavia:

salt -C 'l@neutron:client' state.sls neutron.client

This state creates security groups and rules for amphora instances and Health Manager, a management network with a subnet for Octavia, and a port for Health Manager.

21 If Barbican and signing of the images for Nova are enabled, apply the following states to . create a certificate and sign the Octavia amphora image:

salt -C 'l@barbican:client' state.sls salt.minion.cert salt -C 'l@barbican:client' state.sls barbican.client

22 Update the Salt mine:

salt '*' mine.update

23 Deploy the Octavia services:

salt -C 'l@octavia:api and *01*' state.sls octavia salt -C 'l@octavia:api' state.sls octavia salt -C 'l@octavia:manager' state.sls octavia

24 Generate certificates for the Octavia controller-amphora communication:

salt-call state.sls salt.minion.ca salt-call state.sls salt.minion.cert

Note

You may need to apply the above states twice before they succeed.

If you added Octavia Cluster Manager in previous steps, also apply the following states:

salt-call state.sls salt.minion.ca salt-call state.sls salt.minion.cert

25 Set up the Octavia client:

salt -C 'l@octavia:client' state.sls octavia.client

Seealso

Example of a load balancing topology

Example of a load balancing topology

After you enable Octavia on your new or existing OpenStack environment as described in Configure load balancing with OpenStack Octavia, create a topology for your use case. Each topology requires you to configure the load balancer, port listener, LBaaS pool, and, optionally, the Health Monitor with a specific set of parameters.

For the purpose of this example, a topology for balancing traffic between two HTTP servers listening on port 80 is used. The topology includes the following parameters:

- Backend servers 10.10.10.7 and 10.10.10.29 in the private-subnet subnet run an HTTP application that listens on the TCP port 80.
- The public-subnet subnet is a shared external subnet created by the cloud operator which is accessible from the Internet.
- You must create a load balancer accessible by an IP address from public-subnet that will be responsible for distributing web requests between the backend servers.

For more examples, see: OpenStack Octavia documentation

Caution!

Starting the OpenStack Queens release, use only the OpenStack Octavia client. For details, see OpenStack Queens documentation.

Workflow:

- 1. Log in to a controller node.
- 2. Create a load balancer:

neutron lbaas-loadbalancer-create --name lb1 private-subnet

3. Create an HTTP listener:

```
neutron Ibaas-listener-create --name listener1 --loadbalancer \
Ib1 --protocol HTTP --protocol-port 80
```

4. Create a LBaaS pool that will be used as default for listener1:

```
neutron Ibaas-pool-create --name pool1 --Ib-algorithm \
ROUND_ROBIN --listener listener1 --protocol HTTP
```

5. Create a health monitor that ensures health of the pool members:

```
neutron lbaas-healthmonitor-create --delay 5 --name hm1 --timeout 
3 --max-retries 4 --type HTTP --pool pool1
```

6. Add backend servers 10.10.10.7 and 10.10.10.29 to the pool:

```
neutron Ibaas-member-create --subnet private-subnet --address \
10.10.10.7 --protocol-port 80 --name member1 pool1
neutron Ibaas-member-create --subnet private-subnet --address \
10.10.10.29 --protocol-port 80 --name member2 pool1
```

7. Create a floating IP address in a public network and associate it with a port of the load balancer VIP:

```
vip_port_id=$(neutron lbaas-loadbalancer-show lb1 -c vip_port_id -f \
value)
fip_id=$(neutron floatingip-create admin_floating_net -c id -f value)
neutron floatingip-associate $fip id $vip port id
```

8. Access the VIP floating IP address and verify that requests are distributed between the two servers.

Example:

\$ curl http://172.24.4.14:80 Welcome to addr:10.10.10.7

\$ curl http://172.24.4.14:80 Welcome to addr:10.10.10.29

In the example above, an HTTP application that runs on the backend servers returns an IP address of the host on which it runs.

Example of a load balancing topology with TLS support

This section describes an example of the Nova instances working as simple HTTP web servers that return Hello, world from instance_name! as a response to requests. The example describes how to create a TLS-terminated HTTPS load balancer that is accessible from the Internet with a certificate stored in Barbican. This load balancer will distribute requests to the backend servers over the non-encrypted HTTP protocol.

Caution!

The load balancer certificate must be uploaded to Barbican under the octavia user, so that it can be used later during a listener creation. Therefore, make sure that a user that will create the load balancing topology has access to the Octavia service project (tenant).

Workflow:

- 1. Log in to any OpenStack controller node.
- 2. Create a load balancer with a VIP in the public subnet:

openstack loadbalancer create --name lb1 --vip-subnet-id public-subnet

3. Verify the load balancer VIP address:

openstack loadbalancer list

Example of system response extract:

+-----+ | id | name | project_id | vip_address | provisioning_status | provider | +-----+ | 959b0946-75ba...| lb1 | 070bc4ddda...| 10.0.0.17 | ACTIVE | octavia | +-----+

4. Combine the individual certificate, key, and intermediate certificate to a single PKCS12 file. For example:

openssl pkcs12 -export -in certificate1.crt -inkey privatekey.key -out \ test1.p12 -passout pass:

Note

Use the load balancer VIP address as a FQDN during the certificate generation.

5. In the Octavia service tenant, create a secret in Barbican from the Octavia user:

```
openstack secret store --name='tls_secret1' -t 'application/octet-stream' \
    -e 'base64' --payload="$(base64 < test1.p12)"</pre>
```

6. Add acl for the created secret:

```
secret_id=$(openstack secret list | awk '/ tls_secret1 / {print $2}')
openstack acl user add -u $(openstack user show octavia -c id -f value) $secret id
```

7. Create a listener that uses the TERMINATED_HTTPS protocol and set the secret that was created in the step 5:

```
openstack loadbalancer listener create --protocol-port 443 --protocol TERMINATED_HTTPS \
--name listener1 --default-tls-container=$secret id lb1
```

8. Create a pool that will be used by listener1:

```
openstack loadbalancer pool create --name pool1 --lb-algorithm ROUND_ROBIN \
--listener listener1 --protocol HTTP
```

9. Add members to the created pool with addresses 10.0.0.25 and 10.0.0.20:

openstack loadbalancer member create --subnet-id public-subnet \ --address 10.0.0.25 --protocol-port 80 pool1

openstack loadbalancer member create --subnet-id public-subnet \ --address 10.0.0.20 --protocol-port 80 pool1

10 Obtain the load balancer VIP:

openstack loadbalancer show lb1 -c vip_address -f value

11 Using the load balancer VIP floating IP address, verify that requests are distributed between . the two servers:

curl --cacert certificate1.crt https://10.0.0.17 Hello, world from VM1! curl --cacert certificate1.crt https://10.0.0.17 Hello, world from VM2!

Note

Make sure that the security group allows traffic on port 443.

Move the Octavia certificates from the gtw01 to the Salt Master node

Starting from the Q4'18 MCP release, the certificates for connection to amphora are created on the Salt Master node and then loaded on the gtw nodes. Previously, they were created and stored on the gtw01 node. Therefore, if you have an existing OpenStack environment with Octavia where certificates were initially created on the gtw01 node, you can move these certificates to the Salt Master node to update your previously created load balancers.

To move certificates from the gtw01 to the Salt Master node:

- 1. Log in to the Salt Master node.
- 2. In /etc/salt/master.d/master.conf, verify that the file_recv parameter is set to True.
- 3. Update the Octavia Salt formula:

apt install --upgrade salt-formula-octavia

4. Update the Reclass model:

1. Remove the following classes from cluster/<cluster_name>/openstack/octavia_manager.yml:

- system.salt.minion.ca.octavia_ca

- system.salt.minion.cert.octavia.amphora_client
- 2. Add the following classes to cluster/<cluster_name>/infra/config.yml:

- system.salt.minion.ca.octavia_amphora_ca

- system.salt.minion.cert.octavia.amphora_cluster_client
- 3. TECHNICAL PREVIEW If you want to add the Octavia Cluster Manager to your OpenStack environment, change the following class

- system.reclass.storage.system.openstack_gateway_single_octavia

to

- system.reclass.storage.system.openstack_gateway_cluster_octavia

5. Load the certificates from the gtw01 to the Salt Master node:

salt 'gtw01*' cp.push_dir /etc/octavia/certs upload_path=octavia_certs
salt 'gtw01*' cp.push_dir /etc/pki/ca/octavia_ca upload_path=octavia_certs
mkdir -p /srv/salt/env/prd/_certs
cp -R /var/cache/salt/master/minions/gtw01.<cluster_name>/files/octavia_certs/* \
/srv/salt/env/prd/_certs/octavia

6. Refresh the pillars:

```
salt-call state.sls reclass.storage
salt '*' saltutil.refresh_pillar
salt '*' saltutil.sync_all
```

7. TECHNICAL PREVIEW If you are going to use the Octavia Cluster Manager:

1. Rename the existing port on the gtw01 node:

salt -C 'l@neutron:client' state.sls octavia._rename_hm_neutron_port

2. Update monitor ports:

salt -C 'l@neutron:client' state.sls neutron.client salt '*' mine.update

8. Apply the changes:

salt -C 'l@octavia:manager' state.sls octavia

Seealso

OpenStack Octavia developer documentation

Configure LDAP integration with MCP

This section describes how to integrate your LDAP server with Keystone and a host operating system in MCP. This configuration is not enabled by default and, therefore, requires manual modifications in your cluster model.

Configure LDAP with Keystone server

To configure LDAP integration with Keystone server in MCP, you must create a separate file for this definition in your cluster model. In this section, the ldap.yml file is used as an example. You must also set up the rights mapping for users and groups. If required, you can also specify filtering.

To configure LDAP with Keystone server:

- 1. In your Git project repository, open the cluster/<cluster_name>/openstack/ directory of your cluster model.
- 2. In this directory, create the ldap.yml file.
- 3. Create a configuration for the LDAP integration in the Idap.yml file.

Example:

```
parameters:
 keystone:
  server:
   service name: apache2
   domain:
    example.com:
     description: ""
     backend: Idap
     identity:
      driver: Idap
     assignment:
      backend: sql
     Idap:
      url: Idap://<LDAP ADDRESS>
      bind user: CN=<UserName>,OU=<OU-name>,DC=<DomainName>,DC=<DomainExtension>
      query scope: sub
      page size: 1000
      password: <LDAP PASSWORD>
      suffix: DC=<DomainName>,DC=<DomainExtension>
      user tree dn: DC=<DomainName>,DC=<DomainExtension>
      group_tree_dn: DC=<DomainName>,DC=<DomainExtension>
      user_objectclass: person
      user_id_attribute: sAMAccountName
      user_name_attribute: sAMAccountName
      user pass attribute: userPassword
      user enabled attribute: userAccountControl
      user mail attribute: mail
      group objectclass: ""
      group id attribute: sAMAccountName
      group name attribute: cn
      group_member_attribute: member
      group_desc_attribute: cn
      filter:
       user: "(&(&(objectClass=person)(uidNumber=*))(unixHomeDirectory=*))"
       group: ""
```

4. Optional. Configure the TLS encryption on LDAP traffic as follows:

```
parameters:

keystone:

domain:

example.com:

Idap:

url: Idaps://<LDAP ADDRESS>

tls:

enabled: True

req_cert: demand|allow|never

cacert: |

----BEGIN CERTIFICATE----

...

----END CERTIFICATE----
```

Note

The req_cert configuration key specifies the client certificate checks to be performed on incoming TLS sessions from the LDAP server. The possible values for req_cert include:

demand

The LDAP server always receives certificate requests. If no certificate is provided or the provided certificate cannot be verified against the existing certificate authorities file, the session terminates.

allow

The LDAP server always receives certificate requests. If no certificate is provided or the provided certificate cannot be verified against the existing certificate authorities file, the session proceeds as normal.

never

A certificate is never requested.

For details, see the Integrate Identity with LDAP section in the upstream Keystone Administrator Guide.

5. In cluster/<cluster_name>/openstack/control.yml, include the previously created class to the bottom of the classes section:

classes:

cluster.<cluster_name>.openstack.ldap cluster.<cluster_name> parameters:

...

6. Add parameters for Horizon to cluster/<cluster_name>/openstack/proxy.yml:

```
parameters:
horizon:
server:
multidomain: true
```

7. Enforce the Keystone update:

salt -C 'l@keystone:server' state.sls keystone -b 1 salt -C 'l@horizon:server' state.sls horizon

8. Verify the LDAP integration:

```
source /root/keystonercv3
openstack user list --domain <your_domain>
```

- 9. Grant the admin role to a specific user:
 - 1. Obtain the user ID:

```
openstack user list --domain <your_domain> | grep <user_name> | <user_id> | <user_name> |
```

2. Set the admin role:

openstack role add --user <user_id> admin --domain <your_domain>

Configure LDAP with host OS

To configure the pluggable authentication module (PAM) on a host operating system to support LDAP authentication in MCP, you must create a separate file for this definition in your cluster model and add it to all the nodes where you want to enable this authentication method.

In this section, the ldap.yml file is used as an example.

To enable PAM authentication:

- 1. Open the Git project repository with your cluster model.
- 2. Create the cluster/<cluster_name>/infra/auth/ldap.yml file.
- 3. Create a configuration for your LDAP server in this file.

Example:

naramatara
system
auth:
enabled: true
ldap:
enabled: true
binddn: CN= <username>,OU=<ou-name>,DC=<domainname>,DC=<domainextension></domainextension></domainname></ou-name></username>
bindpw: <password></password>
uri: ldap:// <ldap url=""></ldap>
base: DC= <domainname>,DC=<domainextension></domainextension></domainname>
Idap version: 3
pagesize: 1000
referrals: "off"
##You can also setup grouping, mapping, and filtering using these parameters.
filter:
passwd: (&(&(objectClass=person)(uidNumber=*))(unixHomeDirectory=*))
shadow: (&(&(objectClass=person)(uidNumber=*))(unixHomeDirectory=*))
aroup: (&(objectClass=aroup)(aidNumber=*))
map
nasswd:
homeDirectory: unixHomeDirectory
Jorins Chilly Marine
objilistieli. /bii/basti
ulu. Samaccoullivallie shadawlastChange, nudlastCat
ShauowLasiChange: pwulasiSel

4. In cluster/<cluster_name>/openstack/cluster.yml, include the previously created class to the bottom of the classes section:

classes:

. . .

cluster.<cluster_name>.infra.auth.ldap cluster.<cluster_name> parameters:

5. Enforce the linux.system update:

salt '<target_node>*' state.sls linux.system

Seealso

MCP Operations Guide: Disable LDAP authentication on host OS

Tune the RabbitMQ performance in the OpenStack with OVS deployments

Proper configuration of Nova and Neutron services in your Reclass deployment model allows for decreasing the load on the RabbitMQ service making the service more stable under high load in the deployments with 1000+ nodes.

To tune the RabbitMQ performance on a new MCP OpenStack deployment:

- 1. Generate a deployment metadata model for your new MCP OpenStack as described in Create a deployment metadata model using the Model Designer UI.
- 2. Open the cluster level of your Git project repository.
- 3. In openstack/gateway.yml, define the following parameters as required. For example:

```
neutron:
gateway:
dhcp_lease_duration: 86400
message_queue:
rpc_conn_pool_size: 300
rpc_thread_pool_size: 2048
rpc_response_timeout: 3600
```

4. In openstack/compute/init.yml, define the following parameters as required. For example:

```
neutron:
compute:
message_queue:
rpc_conn_pool_size: 300
rpc_thread_pool_size: 2048
rpc response timeout: 3600
```

5. In openstack/control.yml, define the following parameters as required. For example:

nova: controller: timeout_nbd: 60 heal_instance_info_cache_interval: 600 block_device_creation_timeout: 60 vif_plugging_timeout: 600 message_queue: rpc_poll_timeout: 60 connection_retry_interval_max: 60 default_reply_timeout: 60 default_send_timeout: 60 default_notify_timeout: 60

6. In openstack/compute/init.yml, define the following parameters as required. For example:

nova: compute: timeout_nbd: 60 heal_instance_info_cache_interval: 600 block_device_creation_timeout: 60 vif_plugging_timeout: 600 message_queue: rpc_poll_timeout: 60 connection_retry_interval_max: 60 default_reply_timeout: 60 default_send_timeout: 60 default_notify_timeout: 60

7. In openstack/control.yml, define the following parameters as required. For example:

```
neutron:
server:
dhcp_lease_duration: 86400
agent_boot_time: 7200
message_queue:
rpc_conn_pool_size: 300
rpc_thread_pool_size: 2048
rpc_response_timeout: 3600
```

8. Optional. Set additional parameters to improve the RabbitMQ performance.

The following parameters should be set in correlation with each other. For example, the value of the report_interval parameter should be a half or less than the value of the agent_down_time parameter. The report_interval parameter should be set on all nodes where the Neutron agents are running.

• In openstack/control.yml, define the agent_down_time parameter as required. For example:

neutron: server: agent_down_time: 300

• In openstack/compute/init.yml and openstack/gateway.yml, define the report_interval parameter as required. For example:

neutron: compute: report_interval: 120

Caution!

The time of workload being unavailable can be increased in case of the Neutron agents failover. Though, the number of the AMQP messages in the RabbiMQ queues can be lower.

9. Optional. To speed up message handling by the Neutron agents and Neutron API, define the rpc_workers parameter in openstack/control.yml. The defined number of workers should be equal to the number of CPUs multiplied by two. For example, if the number of CPU is 24, set the rpc_workers parameter to 48:

neutron: server: rpc_workers: 48

- 10 Optional. Set the additional parameters for the Neutron server role to improve stability of . the networking configuration:
 - Set the allow_automatic_dhcp_failover parameter to false. If set to true, the server reschedules nets from the failed DHCP agents so that the alive agents catch up the net and serve DHCP. Once the agent reconnects to RabbitMQ, the agent detects that its net has been rescheduled and removes the DHCP port, namespace, and flows. This parameter was implemented for the use cases when the whole gateway node goes down. In case of the RabbitMQ instability, agents do not actually go down, and the data plane is not affected. Therefore, we recommend that you set it to false. But you should consider the risks of a gateway node going down as well before setting the allow_automatic_dhcp_failover parameter.
 - Define the dhcp_agents_per_network parameter that sets the number of the DHCP agents per network. To have one DHCP agent on each gateway node, set the parameter to the number of the gateway nodes in your deployment. For example, dhcp_agents_per_network: 3.

Configuration example:

neutron: server: dhcp_agents_per_network: 3 allow_automatic_dhcp_failover: false

11 Proceed to the new MCP OpenStack environment configuration and deployment as required.

Seealso

.

- Deploy an OpenStack environment
- Deploy an OpenStack environment manually

Deploy Edge Cloud MVP

This section describes how to deploy an Edge Cloud minimum viable product (MVP) based on the Kubernetes with Calico architecture together with Virtlet and the CNI Genie plugin that enables the Flannel CNI plugin support.

For demonstration purposes, you can also download a virtual appliance of MCP Edge. For details, see: MCP Edge.

Warning

Edge Cloud MVP is available as technical preview. Use such configurations for testing and evaluation purposes only.

To deploy Edge Cloud:

1. Provision three KVM nodes and three compute nodes based on Ubuntu Xenial.

Caution!

During provisioning, disable swap on the target nodes, since this feature is not supported for Edge Cloud MVP.

- 2. Create bridges on the first KVM node as described in the step 3 of the Prerequisites for MCP DriveTrain deployment procedure.
- 3. Set an IP for br-mgm.
- 4. Enable DHCP on the first interface of the br-mgm network.
- 5. Create a deployment metadata model:
 - 1. Navigate to the Model Designer web UI and click Create Model.
 - 2. In the Version drop-down menu, select 2018.11.0 and click Continue.
 - 3. In the General parameters section, set the parameters as required and change the below ones as follows:
 - 1. In Public host, specify \${_param:kubernetes_proxy_address}.
 - 2. In Deployment type, select Physical.
 - 3. In OpenSSH groups, specify lab,k8s_team.
 - 4. In Platform, select Kubernetes.
 - 5. Disable OpenContrail, StackLight, Ceph, CICD, and OSS.
 - 6. Enable Use default network scheme.
- 7. Enable Kubernetes Control on KVM.
- 8. Specify the deploy and control subnets.
- 4. In the Infrastructure parameters section:
 - 1. Disable MAAS.
 - 2. In Kubernetes Networking, select the following plugins:
 - Kubernetes network calico enabled
 - Kubernetes network flannel enabled
 - Kubernetes network genie enabled
 - Kubernetes metallb enabled
 - 3. Set other parameters as required.
- 5. In the Product parameters section:
 - 1. Specify the KVM hostnames and IP addresses. The KVM hosts must have the hostnames kvm01, kvm02, kvm03 due to a limitation in the Jenkins pipeline jobs.
 - 2. Set the subnets for Calico and Flannel.
 - 3. In Metallb addresses, specify the MetalLB public address pool.
 - 4. Select Kubernetes virtlet enabled.
 - 5. Select Kubernetes containerd enabled.
 - 6. In Kubernetes compute count, specify 3.
 - 7. In Kubernetes keepalived vip interface, specify ens3.
 - 8. In Kubernetes network scheme for master nodes, select Virtual deploy interface + single control interface.
 - 9. In Kubernetes network scheme for compute nodes, select the scheme as required.
 - 10 Specify the names of the Kubernetes network interfaces and addresses.
- 6. Generate the model and obtain the ISO configuration drive from email received after you generated the deployment metadata model or from the Jenkins pipeline job artifacts.
- 6. Log in to the KVM node where the Salt Master node is deployed.
- 7. Download the ISO configuration drive obtained after completing the step 5 of this procedure.
- 8. Create and configure the Salt Master VM. For details, see: Deploy the Salt Master node.
- 9. Once the Salt Master node is up and running, set the salt-minion configurations on each kvm and cmp node.

Warning

Due to a limitation in the Jenkins deployment pipeline job, the kvm nodes must have the minion IDs kvm01.domain, kvm02.domain, kvm03.domain with a proper domain.

10 Verify that all nodes are connected to the Salt Master node using the salt-key state.

11 Verify that all nodes are up and running:

salt '*' test.ping

12 In a web browser, open http://<ip address>:8081 to access the Jenkins web UI.

Note

The IP address is defined in the classes/cluster/<cluster_name>/cicd/init.yml file of the Reclass model under the cicd_control_address parameter variable.

13 Log in to the Jenkins web UI as an admin.

Note

To obtain the password for the admin user, run the salt "cid*" pillar.data _param:jenkins_admin_password command from the Salt Master node.

14 In the Deploy - OpenStack Jenkins pipeline job, define the STACK_INSTALL: core,kvm,k8s . parameters.

15 Click Build.

Seealso

.

• View the deployment details

Configure Salt Master threads and batching

Note

This feature is available starting from the MCP 2019.2.6 maintenance update. Before using the feature, follow the steps described in Apply maintenance updates.

You can configure the number of worker threads for Salt Master based on the number of CPUs available on your Salt Master node.

Also, you can set up batching for the pipeline jobs to run Salt states, targeted for a large number of nodes, on a batch of nodes and define the batch size. By default, batching is force-enabled for the Deploy - OpenStack and Deploy - upgrade MCP DriveTrain Jenkins pipeline jobs as they do not support node targeting. Batch sizing is by default supported by the Deploy - OpenStack, Deploy - update system package(s), and Deploy - upgrade MCP DriveTrain Jenkins pipeline jobs.

To configure Salt Master threads:

- 1. Open your Git project repository with the Reclass model on the cluster level.
- 2. In infra/config/init.yml, specify the following pillar for the cfg01 node:

salt: master: worker_threads_per_cpu: <value>

Depending on the amount of CPUs, the total amount of worker threads is based on worker_threads_per_cpu multiplied by the number of CPUs. By default, the number of worker threads is set to 40 using the following pillar:

salt: master: worker_threads: 40

If both worker_threads_per_cpu and worker_threads are defined, worker_threads_per_cpu is prioritized.

- 3. Log in to the Salt Master node.
- 4. Apply the following state:

salt-call state.sls salt.master

5. Verify that the required settings have been applied:

cat /etc/salt/master.d/master.conf | grep worker_threads

To configure Salt Master batching:

- 1. Open the required Jenkins pipeline job.
- 2. Configure batch sizing:
 - For the Deploy OpenStack, Deploy update system package(s), and Deploy upgrade MCP DriveTrain Jenkins pipeline jobs, set the BATCH_SIZE parameter to an integer or percentage. For example, 20 or 20%.

Batch sizing applies using the following workflow:

- 1. Verifies that the BATCH_SIZE pipeline job parameter exists.
- 2. Verifies the SALT_MASTER_OPT_WORKER_THREADS environment variable.
- 3. Verifies the worker_threads_per_cpu pillar parameter and the available number of CPUs.
- 4. Verifies the worker_threads pillar parameter.
- 5. If none of the steps above match:
 - Prior to the MCP 2019.2.8 maintenance update, disables batching.
 - Starting from the MCP 2019.2.8 maintenance update, sets batching to 2/3 of the available Salt Master worker threads.
- For other pipeline jobs, to use batching, set the SALT_MASTER_OPT_WORKER_THREADS environment variable in the global Jenkins settings or directly in the pipeline jobs to an integer or percentage. For example, 20 or 20%.

Batch sizing applies using the following workflow:

- 1. Verifies that the BATCH_SIZE pipeline job parameter exists.
- 2. Verifies the SALT_MASTER_OPT_WORKER_THREADS environment variable.
- 3. If none of the steps above match:
 - Prior to the MCP 2019.2.8 maintenance update, disables batching.
 - Starting from the MCP 2019.2.8 maintenance update, sets batching to 2/3 of the available Salt Master worker threads.